
	
	

1	

	
	

2	

Introduction	..	7	
Bio	R	...	7	
A	note	on	'rntransform'	..	12	
A	note	on	citations	...	12	
Colour	Coding	...	13	
Significance	Testing	..	14	
Assumptions	...	19	
Expectations	for	data	...	20	

Frequency	analyses	..	21	
Goodness	of	Fit	::	Count	Data	..	21	
Chi-squared	tests	using	a	table	of	observations	..	24	
Bootstapping	a	Chi-squared	Test	...	26	
But	how	do	we	interpret	this?	...	29	
Chi	Squared	Steps	...	30	
Using	data	from	a	comma	delineated	(csv)	file	..	33	
Summing	or	averaging?	..	35	
Further	Example:	Another	Flowers	Matrix	...	37	
Chi	squared	steps	...	37	
Further	Example:	Wildebeest	Dataset	...	38	
Chi	squared	steps	...	38	
Library	vcd	..	39	

Correlation	..	41	
Goodness	of	Fit	::	Continuous	Data	..	41	
Correlation	Coefficients	...	41	
Linear	Correlation:	Pearson's	r	...	41	
A	correlation	test	using	Pearson's	r	..	50	
Non-linear	correlation	coefficients	..	51	
Pearson's,	Spearman's	and	Kendall's	correlations	...	53	
Spearman's	and	Kendall's	correlation	tests	...	54	
Correlations:	strong,	weak,	positive	and	negative	...	56	

Variability	Tests	...	58	
Regression	Analysis	::	t-tests	::	ANOVAs	etc	...	58	

What	is	a	covariate?	..	59	
What	is	a	discrete	variable?	...	59	
How	is	a	t	test	comparison	made?	...	60	
Code	for	Transformations	..	63	
Advanced	Transformations	..	64	
Are	there	any	types	of	data	that	are	always	transformed?	...	64	
What	if	no	transformation	seems	to	help?	..	64	

t-tests	..	65	
One	sample	t-test	...	65	
Two	sample	t-test	(unpaired)	...	67	

Effect	sizes	for	t-tests	...	72	
Further	Example:	Tails	..	73	
t-test	steps	...	73	

Two	sample	t-test	(paired)	...	74	

Regression	Analysis	...	76	

Assumptions	of	Linear	Models	...	77	

	
	

3	

Regression	Analysis	Example	...	78	
Testing	Assumptions	..	78	
Wait…	shouldn't	we	test	residuals	to	the	means	for	t-test	then?	..	78	
Diagnostic	Plots	..	79	
Residuals	vs	Fitted	..	80	
Normal	Q-Q	Plot	...	80	
Scale-Location	..	80	
Residuals	vs	Leverage	..	80	
What	to	do	with	Outliers?	..	80	
Scatterplot	in	Library	'car'	..	81	
Overall	Assessment	..	82	
Plotting	the	regression	model	..	84	
Multiple	Regression	...	85	

ANOVA,	ANCOVA	&	related	models	...	86	
Terminology	...	87	
Some	words	of	advice	..	88	
DIAGNOSTIC	PLOTS	..	92	
One-Way	ANOVA	...	95	
One-Way	ANCOVA	with	one	covariate	..	96	
Two-Way	ANOVA	...	96	

Effect	sizes	for	ANOVAS	...	97	
Changing	the	order	of	predictors	...	98	

Predictor	order	is	important	..	99	
Changing	the	interaction	terms	...	101	

Interactions	are	important	...	102	
Interactions	in	linear	models	..	104	

Interaction	Terms:	Step-by-step	...	107	
Exploring	Interaction	Terms	in	Linear	Models	..	108	
Post-hoc	multiple	comparisons	..	116	
Tukey's	Test	..	117	
Alphabet	Soup	on	a	Boxplot	...	124	
Using	'glht'	to	apply	Tukey's	contrasts	...	127	

Non-Parametric	Equivalents	of	Variability	Tests	..	130	
General	non-parametric	test	for	two	groups	...	130	
General	non-parametric	paired	test	for	two	groups	..	131	
General	non-parametric	test:	one	factor	with	multiple	levels	...	133	
General	non-parametric	pairwise	comparison	...	135	

Appendices	...	137	

Generalised	linear	models	..	138	
GLM:	Poisson	distribution	..	140	

Breaking	down	the	output	...	144	
Interpreting	the	Coefficients	..	145	
Using	the	Predict	Function	...	147	
Using	the	predict	function:	graphing	output	for	a	given	range	...	148	
Relative	Strength	of	Effect	...	149	
Evaluating	assumptions	for	a	GLM	..	151	

GLM:	Binomial	distribution	..	156	
Using	a	binary	response	variable:	..	156	

Interpretation	...	159	

	
	

4	

Graphing	..	161	
Conditional	Density	Plot	...	161	
Spline	Plot	..	161	

Mixed	Effect	Models	...	162	

Linear	mixed	effects	models	...	164	
Linear	mixed	effect	model	example	...	165	

Presenting	the	LME	results	...	166	

nlme		and	lme4	...	170	

Generalised	linear	mixed	effect	model	..	172	

Applying	a	Tukey's	test	to	a	mixed	effect	model	...	175	

Advanced	Graphics	...	178	
par	..	178	
Aggressively	restoring	graphing	defaults	...	178	

What	can	be	changed	with	par?	..	180	
Text	size	&	font	..	180	
Point	symbols	...	180	
Lines	...	180	
Margins	..	181	
Colours	...	182	
When	is	it	okay	to	use	colour	in	a	plot?	...	186	

Adding	directly	to	plots	without	using	'par'	...	186	
Setting	axes	ranges	..	188	
Graphics:	putting	it	all	together	...	190	
Adding	axis	information	...	191	
Reordering	categories	on	the	axes	for	boxplots	...	193	
Setting	up	plots	in	grids	and	adding	letters	...	194	
Add	letters	to	a	plot	...	196	
Density	plots	...	199	

Using	ggplot2	..	203	
Basic	scatterplot	in	ggplot2	...	204	
Basic	boxplot	in	ggplot2	...	211	
Basic	violin	plot	in	ggplot2	...	217	
Basic	kernal	density	plots	in	ggplot2	..	219	

Saving	figures	to	files	..	223	

Diversity	Indices	..	225	

Advanced	Statistics	...	227	

Principal	Components	Analysis	..	227	
princomp	..	227	

PCA	Loadings	..	233	
Cumulative	summing	...	234	
Eigenvalues	(keep	axis	if	Eigenvalues	>	1)	...	234	
Proportion	of	variance	explained	by	axes	..	235	
Analysis	..	236	
The	PCA	axes	are	independent	and	normally	distributed	by	default	...	236	

prcomp	...	241	
Ordination	Plots	...	244	

	
	

5	

More	fancy	graphing	for	PCAs	..	251	

MANOVA	...	253	
1)	Univariate	assumptions	of	ANOVAs	are	met	...	253	
2)	Multivariate	normality	is	met	..	255	
2)	Multivariate	equal	variances	...	256	

Running	the	MANOVA	test	...	257	

Nonmetric	Multidimensional	Scaling	...	259	
Shepard	Plot	...	263	
Contribution	of	variables	to	axes	...	264	
An	NMDS	ordination	plot	using	polygons	..	267	
An	NMDS	ordination	plot	using	ellipses	...	268	
An	NMDS	plot	using	isobars	...	269	

ANOSIM	..	271	

Survival	analysis	..	273	
Parametric	Survival	analysis	...	273	
Non-parametric	Cox	Probable	Hazards	Survival	Analysis	...	282	
Mixed	Effects	Cox	Probable	Hazards	Survival	Analysis	..	283	

Repeatabilities	..	284	
Repeatability:	Normal	distribution	of	response	...	285	
Adjusting	for	uneven	sample	size	...	285	
Repeatability:	Others	distribution	of	response	...	287	

Species	Accumulation	Curves	...	288	
Measuring	Effort	..	289	

Graphing	species	accumulation	curves	..	290	
Graphing	species	accumulation	curves:	adding	colour	..	292	

Using	the	random	method	(by	transect)	..	294	
Using	the	collector	method	(by	transect)	...	295	
Using	the	rarefy	method	..	301	
Shannon's	Diversity	Index	..	302	
Species	Richness	...	303	

Conditional	inference	trees	..	309	
Example	of	a	conditional	inference	tree	(with	interpretation)	...	311	

Random	Forests	..	312	

Structural	Equation	Modelling	(Pathway	Analysis)	..	317	
Creating	a	path	diagram:	step	1	..	320	
Creating	a	path	diagram:	step	2	..	321	
Creating	a	path	diagram:	step	3	..	322	
Creating	a	structural	model	...	324	
Creating	a	covariance	matrix:	step	1	...	327	
Creating	a	covariance	matrix:	step	2	...	327	

Fitting	the	model	..	328	
What	are	the	take-home	messages	for	pathway	analyses?	..	342	

Likelihoods,	log	likelihoods	&	AICs	...	343	
Maximum	likelihood	estimation	(ML)	..	345	
Restricted	maximum	likelihood	estimation	(REML)	...	346	
Can	we	select	the	best	model	and	then	look	at	its	P	values?	..	347	

Why	do	we	transform	by	natural	logs	and	multiply	by	-2?	..	349	

	
	

6	

Is	this	related	to	a	deviance	test?	..	350	
What	is	meant	by	parsimony?	...	351	

AIC	(Akaike	information	criterion)	...	353	
Bayes	Information	Criterion	(BIC)	..	353	
AIC	&	BIC	::	R	Code	...	354	

Results	for	a	falsificationist	approach	to	a	linear	mixed	effects	model	..	355	
A	model	comparison	approach	to	a	linear	mixed	effects	model	instead	356	

Corrected	AIC	...	360	

Code	to	generate	'rntransform'	...	361	

	
	

7	

Introduction
Bio R

	
Welcome to the Research Methods in Biology (BIO3011) guide to using R to analyse
biological data. We will be using RStudio during practical demonstrations, but the code
in this book is set up so that you can also use the basic R program if you need to.

Changing working directory in R
Immediately on opening R, the first thing you need to do is change your working directory
to the folder where your data is currently kept.
Mac: Select 'Misc' > Change working directory…
 > navigate to folder where your data is stored (i.e. your csv files)

Windows: Select 'File' > Change dir…
 > navigate to folder where your data is (i.e. your csv files)

Changing working directory in RStudio
Changing the working directory in RStudio is the same for Windows and Mac.
Both: Select 'Session' > Set working directory > Choose Directory…
 > navigate to folder where your data is stored (i.e. your csv files)

Create a working R script file
In RStudio we can create a script file to work from. You also have the option of creating
an R Workbook (which some people prefer), although we'll start simpler and just work
with a script file for now.

Select File > New File
 > R Script

Then, either click the little blue save disc symbol or select File > Save. Give your R
script a name and save it where you will be able to find it. It's usually a good idea to
save your R script in the same folder as your data files.

Colour coding
Code will be colour coded to make it easier to understand. Orange will be used for
functions (commands), blue for anything that you can change or name yourself (the
'moving pieces' of the code, if you like), black for basic syntaxt requirements (arrows,
brackets, commas mostly), green for comments (R doesn't read anything after a hash
tag), and purple for libraries. For example:

library(vcd) # you need to install if you don't have it
attach(skink) # attaches the skink dataset

	
	

8	

	

Basic Flow Diagram for Deciding Which Test to Use.

Predictors are also called independent variables. Responses are also called dependent
variables.

	
	

9	

	

Expanded Flow Diagram for Deciding Which Test to Use

	
	

10	

	
	

Expanded Flow Diagram for Deciding Which Test to Use

Mixed Effects models are shaded blue

	 	

	
	

11	

CODE QUICK REFERENCE SHEET

HISTORGRAMS
hist(yourdata$VARIABLE)

BOXPLOTS
boxplot(RESP ~ PRED, data = yourdata)
boxplot(RESP ~ PRED1*PRED2, data = yourdata, las = 2)
boxplot(RESP ~ PRED, data = yourdata, xlab="xlabel", ylab="ylabel", main="title")

SCATTERPLOTS
plot(RESP ~ PRED1, data = yourdata)
abline(lm(RESP~PRED1, data = yourdata))
plot(RESP ~ PRED1, data = yourdata, xlab="xlabel", ylab="ylabel", main="title")

STRUCTURE PLOTS INTERACTION PLOT (attach dataset first)
mosaicplot(your.xtab, shade=T) interaction.plot(XFACTOR, TRACE, RESPONSE)

SUBSETTING & CHANGING INTO A FACTOR
newdataset <- subset(yourdata, subset=yourdata$VARIABLE=='LEVEL')
yourdata$FACTOR <- as.factor(yourdata$NUMBER)

SUMMARIES
head(yourdata)
str(yourdata)
summary(yourdata)
mean(yourdata$VARIABLE)
sd(yourdata$VARIABLE)
sd(yourdata$VARIABLE) / sqrt(length(yourdata$VARIABLE)))

CORRELATION
cor(yourdata$VARIABLE1, yourdata$VARIABLE2, method = "pearson")
cor(yourdata$VARIABLE1, yourdata$VARIABLE2, method = "spearman")
cor(yourdata$VARIABLE1, yourdata$VARIABLE2, method = "kendall")
round(cor(yourdata[,2:4]),2) # correlation grid: columns 2-4, round to 2 dp

COUNT DATA
your.xtab<-xtabs(RESP~PRED1+PRED2,data=yourdata)

fisher.test(your.xtab)

chisq.test(your.xtab, correct=F)
chisq.test(your.xtab, sim=T)
chisq.test(your.xtab)

chisq.test(your.xtab, correct=F)$res
chisq.test(your.xtab)$res

chisq.test(your.xtab, correct=F)$exp
chisq.test(your.xtab)$exp

ONE SAMPLE T-TEST
t.test(yourdata$VARIABLE)

TWO SAMPLE T-TEST
t.test(RESP~PRED,data=yourdata, var.equal=T)
t.test(RESP~PRED,data=yourdata)
t.test(yourdata$GROUP1,yourdata$GROUP2,paired=T)

GENERAL LINEAR MODELS
model.lm <- lm(RESP~PRED1*PRED2, data = yourdata)
model.lm <- lm(RESP~PRED1+PRED2, data = yourdata)
summary(model.lm)
anova(model.lm)
model.aov <- aov(RESP~PRED1*PRED2, data = yourdata)
model.aov <- aov(RESP~PRED1+PRED2, data = yourdata)
summary(model.aov)
TukeyHSD(model.aov, "FACTOR")

	
	

12	

A note on 'rntransform'
The rank normal transformation from library GenABLE is used quite a bit in this book,
however, the library doesn't appear to be being maintained at the time of writing this. I
have salvaged the code out of an older working version of GenABLE and included it as
the very end of this PDF.

If you want to create the rntransform function, just copy and paste the rntransform
code included at the end of this file. You should find that 'rntransform' appears as a
function in your working space.

A note on citations
This is not a peer-reviewed work. You should probably be hesitant about citing it in a
peer reviewed journal. However, if you wish to, please use the following citation. This
is updated each time a new version is released:

Johnstone, Christopher P. (2019) Bio R: Statistical Stuff for the Biologically Minded (version
2019.3). Self-Published.

	
	

13	

Colour Coding
R code in this PDF is colour coded throughout. Functions (commands) are coloured
orange. Names of objects or options (i.e. things that you will need to change or rename)
are coloured blue. Basic syntactical signs (parenthesis, commas, plus or multiplication
signs) are colour black. Package names are coloured purple. Note, which follow a
hashtag (#) are not read by R, and serve as a place where you can make notes about your
tests, code, and figures. These are coloured green.

In the following example, the orange words are functions that R will recognise as
commands. Functions are typically placed to the immediate left of an opening
parenthesis. The library 'car' is denoted in purple, and is bracketed by black quote marks
and parentheses. The object swallows.lm is an object that the biologist as created and
named themselves.

install.pckages("car") # if not already installed
library(car)
crPlots(swallows.lm)

	
	

14	

Significance Testing
For most biologists statistics is a tool. It is a means to an ends. What we're really
interested in is the plants, animals or microbes, not the stats. As such, we try to keep
things simple, while maintaining some rigor throughout the process of analysis.

What do we actually need to know?

1. We need to be able to identify 'classes' of data
2. We need to know how to pick an appropriate test
3. We need to know & check the assumptions of tests
4. We need to know how to run appropriate tests
5. We need to know how to present the results
6. We need to know how to interpret the results

Working backwards through these points

6. INTERPRETING RESULTS
A P-value can be thought of as the probability that the result could have been obtained
by chance given the noise in the data.

- Is there a difference between A and B? P < 0.05 = Yes. P > 0.05 = No.
- Are A and B showing a trend? P < 0.05 = Yes. P > 0.05 = No.

5. PRESENTING RESULTS
Usually what we present is:

• Degrees of freedom (often n-1 but check your test results)
• An n if no degrees of freedom is produced (some tests don't us df)
• A test statistic

o This is informative about the shape of the distribution. It is usually a ratio
of the signal to noise in the data (higher = more signal, less noise)

o F, z or t values are examples of test statistics
o Usually reported to 2 dp (decimal places)
o Test statistics are usually not interpreted in any way. They are presented

in the results but not commented on in the Discussion.
• A P-value

o Informative about significance or non-significance
o Usually reported to 3 dp.
o If less than 0.001, write < 0.001.

	
	

15	

Why don't we just use a test statistic?
If the test statistic is a ratio of signal to noise, why use a P-value at all? The P-value
depends on both the test statistic and the degrees of freedom. Using an made-up
example where the F ratio is the test statistic…

Table 1. Example of how changes in the test statistic (ratio of signal to noise) and degrees of freedom
(information in the sample) can alter the P value (probability of having obtained a result if the null were
actually true)

 t value df P
 2 5 0.501
 4 5 0.005 Higher t but same df
 2 10 0.037 Same t but higher df

You can try these examples in R. Note how the P value changes as the degrees of freedom
changes. The test statistic has been kept the same at 2.3. Note also that we need 1 minus
the probability (pt) because R returns the beta rather than the alpha by default.

t-tests
1-pt(2.3, 5)
1-pt(2.3, 10)
1-pt(2.3, 20)
1-pt(2.3, 200)

t-tests
1-pt(1.3, 6)
1-pt(2.3, 6)
1-pt(3.3, 6)
1-pt(4.3, 6)

Degrees of freedom, test statistics and P-values can also be presented as tables:

Table 2. Example of how to present results in a table form. Instead of writing P < 0.05 in the table you
could include a line here in the caption stating: alpha < 0.05 indicated by *

Response Predictor df F P P < 0.05
Mass (g) Fledging date 11 6.76 0.010 *
 Habitat type 1 1.62 0.205
Hct (%) Fledging date 11 15.31 < 0.001 *
 Habitat type 1 2.10 0.150
Hb (%) Fledging date 11 7.80 0.005 *
 Habitat type 1 3.28 0.072

Test statistics can be summarized as a group in the text, especially if they are non-
significant:

	
	

16	

All tests of the effect of habitat on mass and blood variables for adult house
swallows were non-significant (all df = 1, F < 3.28, P > 0.072). All tests of the
effect of fledgling date on mass and blood variables for adult house swallows
were significant (all df = 11, F > 6.76, P < 0.010).

Note how the greater than and less than signs are arranged. If a set of tests are significant
we are interested in the smallest F (test statistic) and largest P. If a set of tests are non-
significant we are interested in the largest F and smallest P.

 How to write and talk about significance

• There is no such thing as 'more' or 'less' significant. A P-value either meets a
significance level (usually 0.05) or it doesn't.

• If a test is not significant we say that it is 'non-significant' not 'insignificant'.
• Being significant doesn't make something true. Significance only makes it more

likely given the evidence.
• Non-significant results can be informative too.

4. RUNNING APPROPRIATE TESTS
This will make up the bulk of the statistical sections of this pdf.

	
	

17	

3. TESTING ASSUMPTIONS
Each statistical test has a set of assumptions about the data that must be checked before
running the test. Assumptions are not always the same among tests. For example, for a
t-test the response data must be normally distributed, for an ANOVA the residuals of the
model must be normally distributed, and for a chi-squared test there is no requirement
for the data to be normal at all.

Why test assumptions?
Statistical tests make assumptions about the 'shape' of the data and/or the residuals of
the model… for example, a t-test assumes that the data will consist of two
(approximately) normally distributed sets for comparison:

	
	

	
	

The example of the left would probably be acceptable for a t-test, but the example on
the right would generate a P-value that would be meaningless nonsense. The key
problem is that often a test will still be able to generate results when the data is
unsuitable and if you don't stop to check the suitability of the data ahead of time your
results may be extremely misleading. Remember also that assumptions are different for
different tests. The assumptions for a t-test are not the same as a generalised linear
model or a chi squared test.

Do some tests have no assumptions?
Some tests have very few (although independence of observations is always a given). A
Kruskall-Wallis test for example has almost no assumptions about the underlying data,
but still requires independence of observations.

How do we test independence of observations?
Although tests do exist to identify whether a set of values might have a correlation
structure (perhaps spatial or temporal autocorrelation, for example), the key to avoiding
the problem of pseudoreplication is good experimental design. Care needs to be taken
to think through the nature of the design and in what ways samples might be interacting.

2. PICKING AN APPROPRIATE TEST
This will depend on whether your data meets the assumptions of a test. At its most
fundamental, you need to first look at the response data and decide if it is continuous,
binomial or count data. This will determine what sorts of tests you look at as potential
first options.

	
	

18	

1. IDENTIFY CLASSES OF DATA
You have been provided with a handy flow chat to help you work out which test to use
under different circumstances but the first step is identifying the class of data you have.
These are the basic types of data you may be working with:

Discrete data. This is an umbrella category that includes categorical, binomial, ordinal
and also count data (although counts tend to be handled differently to the others).

Categorical. Also called nominal data. R classifies categorical data as a factor. Categorical
data consists of categories that have no relative positions to each other. Usually there are
three or more categories. If there are two categories then the data becomes binomial.
Categorical data will typically be a predictor (independent) in an analysis. An example of
categorical data would be if you wanted to test bee pollination of three species of flowers.
The flowers don't exist on a scale or spectrum, they are simple Species A, B and C forming
three categories. In this example R would identify this as a factor (flower species) with three
levels (species A, B and C).

Binomial. Also called dichotomous data. Binomial data consists of two discrete categories.
Yes and No responses, Male and Female or species site Presence and Absence data are all
examples of binomial data. If you enter binomial data using words or letter R will identify it
as a factor. If you enter Binomial data as 0 and 1 R will identify binomial data as an integer.

Ordinal. Data that is ordered or ranked. Instead of measuring the length of fallen logs in a
field site, you might decide to rank them from largest to smallest. Ordinal data can accept
ties. If you decided two logs were so similar they were in effect the same size you could rank
them 1, 2, 3, 3, 4, 5 and 6. R will identify ordinal data as an integer.

Count. Count data is a sub-type of ordinal data where you have counted instances of
something. R will identify count data as an integer.

Continuous. Also called interval data. Continuous data is measured on a scale. It can be both
positive and negative (e.g. temperature) or only positive (e.g. mass). If your data has (or could
have) decimal places, R will identify it as a number.

Percentages. Percentage data is a sub-type of continuous data. Percentages are often
generated from observations of count data or continuous data. Percentages are bounded and
non-normal, which breaks assumptions of a number of tests. They often need to be
transformed. The standard transformation for a Percentage is an arcsine square root
transformation. R will identify percentage data as a number.

Ratios. Percentage data is a sub-type of continuous data. Ratios are often generated from
observations of count data or continuous data, especially where one variable is measured
against another variable. Ratios are bounded by zero and they are non-normal, which breaks
assumptions of a number of tests. They often need to be transformed. The standard
transformation for a Ratio is a square root transformation (if zeroes are present) or a log
transformation (if no zeroes are present). R will identify Ratio data as a number.

	
	

19	

Assumptions

Most (nearly all) statistical analyses have assumptions. An assumption is a requirement
that the data must satisfy for the test to be valid. Assumptions vary among tests but most
frequently encountered assumptions are:

• Independence: The samples must be independent of one another. This needs to be
considered during the design phase. This is a consideration of almost all tests. Where it
isn't a consideration, the test will probably be intended to examine the degree of
departure from independence (i.e. spatial autocorrelation tests).

• Normality: The data and variances of the data should be (reasonably) normally
distributed. This can be tested in R.

• Homogeneity and Homoscedasticity of variance: Are the variances of groups (reasonably)
similar? In particular, there will be problems if the variance is larger in groups with larger
means. This can be tested in R.

• Linearity: In analyses of continuous data, such as in a regression analysis, linearity of the
continuous data is important (i.e. the response data should not plot a curve against the
explanatory data). This can be tested in R.

• No correlation of predictors: Explanatory or predictor variables should not correlate.
Multicolinearity occurs when predictors co-occur or co-correlate. For example, most
smokers carry cigarettes and a lighter. Using both 'cigarette carrying' and 'lighter carrying'
as predictors is invalid because they are correlating and 'explain' the same thing: the
behaviour of smoking. Correlating predictors are sometimes referred to as confounding
variables or nuisance variables. Sometimes the best option is to acknowledge in the
methods that you collected data for A and B, but found that A and B were correlating
(typically we worry if a correlation coefficient for two predictors is > 0.6), so the variable
of least interest was dropped prior to analysis.

	
	

20	

Expectations for data

We expect continuous data to follow a normal distribution.

	

But count data cannot be negative, so we can't expect counts to be normally distributed. Counts will run
up against the zero line.

	

And we wouldn't expect a binomial distribution of 0s and 1s to look anything like a bell shaped curve.

	

	
	

21	

Frequency analyses
Goodness of Fit :: Count Data

	
Count data is produced when you have a response variable that is simple a count of items
(trees in a plot, count of behaviours in a ten-minute period, insects in a trap). All of these
variables could potentially be analysed with ANOVAs (mostly because ANOVAs are robust
tests and can tolerate reasonably non-normal data), but usually if you did want to apply
a linear model to count data, the count data will need to be scaled and/or centred in
some way (either via percentages or applying transformations in R).

Frequency analyses are a more appropriate choice. However, these require counts to be
measured against a category, rather a continuous predictor. Typically this will be a count
that is classified and then summed up, but depending on your level of independence you
may need to average courts by category instead. A frequency analysis does accept
fractions, so that an average of 5.3 counts for a category (for example) could be used
without problems.

To start us off, imagine you've done a field count of plants and have found 50 females
and 40 males. We might want to ask whether this differs from the expected ratio of 1:1.
To answer this we can calculate a chi-squared value and then derive a P value from it.

Chi Squared = Sum (observed - expected) 2 / expected

A chi-squared is an example of a test statistic. However, instead of being a ratio of signal
to noise (like a t-value or an F-statistic) a chi-squared value is a ratio of the divergence
of observed values from the expected values. This makes it something closer to being a
ratio of signal to expectation, and it can be thought of as addressing the question: how
much does this set of counts diverge from expected values?

A straightforward chi-squared tested is sometimes called a goodness of fit test, but
'goodness of fit' is a general term for any of a number of methods that test how well data
fists a model. For example, an Akaike information criterion (AIC) is also a goodness of fit
index, as is an R2 value, though these work quite differently to a chi-squared. For now, it
is enough to know that a chi-squared is just one approach to questions about the
goodness of fit of data to the expectations of an underlying model.

ASSUMPTIONS OF CHI-SQUARED TEST
(1) Categories are independently classified (collected randomly)
(2) No more than 20% of expected values can be < 5

	

	
	

22	

Using our example above, let's test whether 50 female plants and 40 male plants departs
from the expected 1:1 ratio.

Chi-squared goodness of fit tests against an expected ratio. A ratio of 1:1 is the default.

chisq.test(c(40,50))
	

	

The percentage of males and females:

40/90
50/90
	

	

What if we collected the same ratio, but from 900 bushes?

chisq.test(c(400,500))

	
	

RESULT
	
 Chi-squared test for given probabilities

data: c(40, 50)
X-squared = 1.1111, df = 1, p-value = 0.2918
	
	

RESULT
	
> 40/90
[1] 0.4444444
> 50/90
[1] 0.5555556

RESULT

> chisq.test(c(400,500))

 Chi-squared test for given probabilities

data: c(400, 500)
X-squared = 11.111, df = 1, p-value = 0.0008581

	
	

23	

But remember: never use percentages of the data or reduce the data down to a basic
ratio, because this alters the results. You lose information about the weighting of the
number of samples used to generate the data.

chisq.test(c(44,56))
	

	

What if on the other hand we expected a 30:70 male to female difference? Maybe another
researcher found a 30:70 male to female ratio in a closely related species and we want
to check whether our species is different to this. Remember that order matters. Male
observed = 40. Male expected = 30% (i.e. a proportion of 0.3). Female observed = 50.
Female expected = 70% (i.e. a proportion of 0.7).

chisq.test(c(40,50)	,p=c(0.3,0.7))
	

	

RESULT

 Chi-squared test for given probabilities

data: c(44, 56)
X-squared = 1.44, df = 1, p-value = 0.2301

RESULT

 Chi-squared test for given probabilities

data: c(40, 50)
X-squared = 8.9418, df = 1, p-value = 0.002787

	
	

24	

	

Chi-squared tests using a table of observations
A chi-squared test can test divergence from expectation in two dimensional arrays of
numbers too. Let's construct a simple 2x2 matrix. Let's say we have data that looks like
this:

Table	1.	Contingency	table	showing	counts	of	male	and	female	plants	of	the	same	species	with	pink	
and	white	flowers.	
	

 Male Female
Pink 23 45
White 34 67

To run a chi-squared test we need to create a matrix. We will do this in R and call it
'flowers'.
flowers <- matrix(c(23,34,45,67), nrow=2)
flowers

	
Apply a chi-squared test
chisq.test(flowers)
	

	
	
This applies 'Yate's continuity correction' as a default, but this correction has fallen out
of fashion among statisticians. We don't need to use it, so let's remove the correction.

RESULT

> flowers
 [,1] [,2]
[1,] 23 45
[2,] 34 67

RESULT

 Pearson's Chi-squared test with Yates' continuity
correction

data: flowers
X-squared = 8.3917e-31, df = 1, p-value = 1

	
	

25	

chisq.test(flowers, correct=F)

Note that you could run the entire matrix inside the chi-squared test, but this approach
can be confusing. It's best to take things a step at a time until you are used to how the
code should look and where errors might happen. However, the whole code string as one
line would look like this:

chisq.test(matrix(c(23,34,45,67), nrow=2), correct=F)
	

	
	
We can also use piping from the 'tidyverse' family of libraries. Some people find the
piping method easier to use, and if you are used to piping, you can certainly make use of
it here. Remember to load the packages using library("tidyverse") first.

 matrix(c(23,34,45,67), nrow=2) %>% chisq.test(correct=F)
	

	
	
	

RESULT

 Pearson's Chi-squared test

data: flowers
X-squared = 0.00046639, df = 1, p-value = 0.9828

RESULT

> chisq.test(matrix(c(23,34,45,67), nrow=2), correct=F)

 Pearson's Chi-squared test

data: matrix(c(23, 34, 45, 67), nrow = 2)
X-squared = 0.00046639, df = 1, p-value = 0.9828

RESULT

 Pearson's Chi-squared test

data: .
X-squared = 0.00046639, df = 1, p-value = 0.9828

	
	

26	

Bootstapping a Chi-squared Test
If the assumption that no more than 20% of expected values less than 5 is not met, you
will see an error stating that the P value may not be correct. For example, try this…

flowers_2 <- matrix(c(5,7,45,2), nrow=2)
flowers_2
chisq.test(flowers_2, correct=F)

Maybe we want to look at the expected values to check where the problem is. We can
use the $ symbol to look inside a test, just like how you can use it to look inside a dataset.

chisq.test(flowers_2, correct=F)$expected # $exp will also work

One of the expected values is <5 (1.83). Because there are only four values, this means
that 25% of the values are <5. The assumption that no more than 20% of expected values
be 5 or less has not been met.

RESULT

> flowers_2
 [,1] [,2]
[1,] 5 45
[2,] 7 2

> chisq.test(flowers_2, correct=F)

 Pearson's Chi-squared test

data: flowers_2
X-squared = 21.625, df = 1, p-value = 3.315e-06

Warning message:
In chisq.test(flowers_2, correct = F) :
 Chi-squared approximation may be incorrect

RESULT

 [,1] [,2]
[1,] 10.169492 39.830508
[2,] 1.830508 7.169492

Warning message:
In chisq.test(flowers_2, correct = F) :
 Chi-squared approximation may be incorrect

	
	

27	

You can use the $ to look at other variables in the test as well. To find out what you can
view, use the structure command (str) on the test.

str(chisq.test(flowers_2, correct=F))

Or you could turn the test into an object and look at the structure this way…

flowers_2_test <- chisq.test(flowers_2, correct=F)
str(flowers_2_test)

Or you could use tidyverse piping, like this…

flowers_2 %>% chisq.test(correct=F) %>% str()

These should all give the same result (note that the warning will keep repeating because
the people who have programmed R are rather thorough, and they don't want you to
miss the warning by accident):

Try looking at the residuals. The approach is the same as for expected values.

chisq.test(flowers_2, correct=F)$residuals # $res will also work

RESULT

> str(chisq.test(flowers_2, correct=F))
List of 9
 $ statistic: Named num 21.6
 ..- attr(*, "names")= chr "X-squared"
 $ parameter: Named int 1
 ..- attr(*, "names")= chr "df"
 $ p.value : num 3.31e-06
 $ method : chr "Pearson's Chi-squared test"
 $ data.name: chr "flowers_2"
 $ observed : num [1:2, 1:2] 5 7 45 2
 $ expected : num [1:2, 1:2] 10.17 1.83 39.83 7.17
 $ residuals: num [1:2, 1:2] -1.621 3.821 0.819 -1.931
 $ stdres : num [1:2, 1:2] -4.65 4.65 4.65 -4.65
 - attr(*, "class")= chr "htest"

	
	

28	

So, what do you do if the assumption that no more than 20% of the values should be 5
or less? One potential workaround is to compute a p-value by Monte Carlo simulation
and use this for the chi-squared test. R has a built-in function that allows you to do this:

To use a Monte Carlo simulation, try this:

chisq.test(flowers_2, correct=F, simulate.p.value=T)
note that sim=T will also work
	

	

The above test result was generated from 2000 simulations of the data using Monte
Carlo picking. We might want to increase this value. Let's try 10,000 simulations. The
test uses B to indicate number of simulations for the Monte Carlo test. Usually 10,000
is considered a suitable number for any kind of bootstrapping or simulation. If you don't
see a significant result at 10,000 simulations, it probably isn't there to see.

chisq.test(flowers_2, correct=F, simulate.p.value=T, B=10000)
	

	
	
A Fisher Exact Test will also allow you to get around problems of not meeting the
assumption that no more than 20% of expected values be 5 or less, but this test doesn't
work with all configurations of data. The Monte Carlo simulation (above) is more
flexible.

fisher.test(flowers_2)	
	

RESULT

 Pearson's Chi-squared test with simulated p-value
(based on 2000 replicates)

data: flowers_2
X-squared = 21.625, df = NA, p-value = 0.0004998

RESULT

 Pearson's Chi-squared test with simulated p-value
(based on 10000 replicates)

data: flowers_2
X-squared = 21.625, df = NA, p-value = 9.999e-05

	
	

29	

But how do we interpret this?
The P value for the Chi Squared test is telling us whether there is any significant
departure at all of observed from expected values. But what if we want to understand
which categories are driving a significant result. We can do this visually using mosaic
plots, but a mosaic plot is simply a visual representation of residuals. What are the
residuals and how do we interpret them?

You can check residuals in the same way that you checked expected values… let's start
by going back to our original flowers matrix.

flowers <- matrix(c(23,34,45,67), nrow=2)
flowers

chisq.test(flowers, correct=F)$residuals

Any residual that is between -2 and -4 or between +2 and +4 is significant at the 0.05
level. Any residual that is less than -4 or above +4 is significant at the 0.01 level. If you
remember, our first flowers dataset did not significantly depart from expected values (P
= 0.983), so it is no surprise to discover that there are no significant differences in the
residuals.

Let's try a different dataset, one with more rows and columns and more extreme
differences in values.

Table	2.	Contingency	table	showing	counts	of	male	and	female	plants	of	the	same	species	with	pink	
and	white	flowers.	

 Male Female
Red 2 10
Pink 15 45
White 38 7

RESULT

 > chisq.test(flowers, correct=F)$residuals

 [,1] [,2]
[1,] 0.01359119 -0.009695849
[2,] -0.01115196 0.007955723

	
	

30	

flowers_3 <- matrix(c(2,15,38,10,45,7), nrow=3)
flowers_3

Chi Squared Steps
1) Check the assumptions (i.e. look at the expected values)
2) Decide, can you use a standard Chi Squared test or Monte Carlo simulations?
3) Run the appropriate test
4) Check the residuals
5) Produce a mosaic plot
	
1) are 20% of values < 5?
chisq.test(flowers_3, correct=F)$expected

2) No expected values are 5 or less. Assumptions are met.

3) Run the test. There is a significant result.
chisq.test(flowers_3, correct=F)

4) Check the residuals.
chisq.test(flowers_3, correct=F)$residuals

5) Produce a mosaic plot.
mosaicplot(flowers_3, shade=TRUE)

RESULT

> flowers_3 <- matrix(c(2,15,38,10,45,7), nrow=3)
> flowers_3

 [,1] [,2]
[1,] 2 10
[2,] 15 45
[3,] 38 7

	
	

31	

	
fig.	1.	A	mosaic	plot	showing	values	above	and	below	expected	for	distributions	of	flower	colours	in	
a	species	of	dioecious	angiosperm	(χ2	=	41.4,	df	=	2,	P	<	0.001).	

Note that the chi letter (χ) is used to denote the chi squared test statistic. Now, one
obvious problem with this plot is that R has no idea what the rows and columns should
be called. This makes it hard for us too. But we can rename the row and column names
in R. Try this…

rownames(flowers_3) <- c("Red", "Pink", "White")
colnames(flowers_3) <- c("Male", "Female")
flowers_3

RESULT

 Male Female
Red 2 10
Pink 15 45
White 38 7

	
	

32	

mosaicplot(flowers_3, shade=TRUE)

	
fig.	2.	A	mosaic	plot	showing	values	above	and	below	expected	for	distributions	of	flower	colours	in	
a	species	of	dioecious	angiosperm	(χ2	=	41.4,	df	=	2,	P	<	0.001).	Red	flowers	in	males	(res	=	-1.5)	and	
females	(res	=	1.4)	did	not	differ	from	expected.	Pink	flowers	occurred	at	numbers	significantly	
below	expected	in	males	(res	=	-2.5	and	above	expected	in	females	(res	=	+2.4).	Contrastingly,	white	
flowers	were	at	numbers	significantly	above	expected	in	males	(res	=	+3.7)	and	below	expected	in	
females	(res	=	-3.4)	

The shade=TRUE component of the code is telling R that you want it to produce
boxes that show blue for significantly above expected and red for values significantly
below expected. If we compare the box colours to the residuals, we will see that the
colours will match. Note that col=TRUE simply paints half the boxes dark or light
grey, and isn't meaningful in terms of interpretation.

It's also worth being aware that the residuals are in the unit of the original count too.
So, that there were 3.4 fewer white flowers than expected in the dataset, given the
distribution of all other flower colours by plant sex.

	
	

33	

	
	

Using data from a comma delineated (csv) file
Let's look at an example using real data. Import the myna pecking data set
(myna_peck.csv). This dataset contains a count of the number of times common mynas
were pecking in a 10 second observation period. There is a set of explanatory variables
included as well, but the primary variable of interest is whether the common mynas were
observed in urban, suburban, periurban or rural landscapes.
	
myna <- read.table('mynas_peck.csv',header=T,sep=',')
str(myna)

Because this is a balanced design (there are 40 observations per landscape category) we
can (arguably, see below) sum the values together to generate a contingency table.

myna.xtab <- xtabs(PECK.rate~REGION,data=myna)
myna.xtab
	
Check expected values.
chisq.test(myna.xtab, correct=F)$exp
	
Run a chi squared test.
chisq.test(myna.xtab, correct=F)
	
We can look at the residuals.
chisq.test(myna.xtab, correct=F)$res
	
REGION
 Peri-urban Rural Suburban Urban
-0.50529115 0.08421519 0.50529115 -0.08421519

The residuals indicate that pecking was slightly below expected in peri-urban and urban
environments and slightly above expected in rural and suburban environments, but the
difference isn't significant. Library vcd has a nice looking mosaic plot option:
library(vcd)
strucplot(myna.xtab,shade=T)

You will have received an error message after running the structure plot. This hasn't
worked because there is only one predictor. You need to take the residuals from the chi-
squared test and use them in the structure plot. This code takes the residuals and drops
them into a new object we've created and called RES.
RES <- chisq.test(myna.xtab, correct = F)$res
strucplot(myna.xtab, shade = T, residuals = RES)

	
	

34	

fig.	3.	A	mosaic	plot	showing	values	above	and	below	expected	for	rates	of	mynas	pecking	
per	10	seconds	(a	measure	of	foraging	activity)	(χ2	=	0.53,	df	=	3,	P	=	0.913).	The	foraging	
activity	has	been	summed	across	four	regions:	urban,	suburban,	rural	and	peri-urban.	No	
values	were	found	to	be	significantly	above	or	below	expected.	All	residuals	were	between	-
0.51	and	+0.51.	

One confusing element of this graph is that there is a p-value = < 2.22e-16 down at the
bottom of the residuals bar. This is false and has been generated because we forced the
mosaic plot to accept residuals to get around the error message above. Because nothing
is significant, it may be preferable to just present the plot without a residual bar (i.e.
remove shade = T). If you were determined to use this plot, you'd need to either include
a note in the caption that the P value shown is the maximum possible significance value
in R and in this instance it is not indicating significance here, or, simply remove it in an
image manipulation program.

	
	

35	

Summing or averaging?
Arguably, we may have broken the assumption of independence by summing the peck
counts just now. The pecks are counts per bird per hour. As a bird is likely to be pecking
at a given rate because it is feeling more or less safe in the environment (i.e. a bird that
isn't worried about predation is more likely to spend time feeding), then the peck counts
are probably not strictly independent. How might we solve this? One obvious (and
perhaps the most straightforward) approach is to create a new csv file, average out all
the pecks by geographic area, and use that. However, we can do something similar in R,
although it takes a bit of code. Have a go at this…

library plyr is part of the tidyverse, so if you already have
tidyverse loaded, plyr should already be running. If not, load it:

library(plyr)

attach(myna)
myna.average <- ddply(myna, .(REGION), summarise,
 PECK.MEANS = mean(PECK.rate))
	
# Check that this worked	
myna.average

	
	
	
# Turn into a dataframe	
myna.average <- as.data.frame(myna.average)
	
myna.xtab <- xtabs(PECK.MEANS~REGION,data=myna.average)
myna.xtab
	
Check expected values (note that R recognised 'exp' as an abbreviation of 'expected').
chisq.test(myna.xtab, correct=F)$exp
	

RESULT

> myna.average
 REGION PECK.MEANS
1 Peri-urban 3.375
2 Rural 3.550
3 Suburban 3.675
4 Urban 3.500

	
	

36	

Run a chi squared test.
chisq.test(myna.xtab, sim=T, B=10000)
	
We're getting an error message. What does this mean?

This warning simply means that there are a small number of 'recycled' values in the
matrix of 10,000 simulations that is generated. This is because the total length of the
data is not an even multiple of the number of rows. To all intents and purposes, you can
ignore this message, especially where the result is highly non-significant (as here) or you
have a P <0.01. If you do get a marginal significance (i.e. around P = 0.04 to 0.05), then
you might want to worry about resolving this mathematically, but in that case you may
need to talk to a mathematician.

Note that you could do the same manually with the averages, generating a matrix:

myna_average_pecks <- matrix(c(3.375,	3.550,	3.675,	3.500))

rownames(myna_average_pecks) <- c("Peri-urban", "Rural",
"Suburban","Urban")

colnames(myna_average_pecks) <- c("Average_Pecks")

myna_average_pecks

Check expected values.
chisq.test(myna_average_pecks, correct=T)$exp
	
Run a chi squared test.
chisq.test(myna_average_pecks, sim=T, B=10000)

RESULT

chisq.test(myna_average_pecks, sim=T, B=10000)

 Chi-squared test for given probabilities with simulated
p-value (based on 10000 replicates)

data: myna_average_pecks
X-squared = 0.013121, df = NA, p-value = 1.007

Warning message:
In matrix(sample.int(nx, B * n, TRUE, prob = p), nrow = n) :
 data length [141000] is not a sub-multiple or multiple of
the number of rows [14]

	
	

37	

	
	

Further Example: Another Flowers Matrix
Have a go at these examples if you want some practise.

Let's create the following matrix.
	

 Male Female
Red 2 4
Pink 5 16
White 18 1

	
	
flowers <- matrix(c(2,5,18,4,16,1), nrow=3)
flowers

Chi squared steps
1) Check the assumptions (i.e. look at the expected values)
2) Decide, can you use a standard Chi Squared test or Monte Carlo simulations?
3) Run the appropriate test
4) Check the residuals
5) Produce a mosaic plot	
	

	
	

38	

	

Further Example: Wildebeest Dataset

Import the wildebeest.csv dataset. Some researchers looked at whether there was a sex
difference in the number of wildebeest calves that died from predation versus other
causes. Let's see if we can identify any significant departures of observed from expected
values.
	
wildebeest <- read.table(wildebeest.csv',header=T,sep=',')
str(wildebeest)

Chi squared steps
1) Create a contingency table (use the xtab function). You need to use a + because we
want to divide the predictor variables along two categories:

wildebeest.xtab <- xtabs(COUNT~SEX+DEATH,data=wildebeest)	

2) Check the assumptions (i.e. look at the expected values)
3) Decide, can you use a standard Chi Squared test or Monte Carlo simulations?
4) Run the appropriate test
5) Check the residuals
6) Produce a mosaic plot

	
	

39	

Library vcd
Library vcd has a couple of nice visual options for presenting contingency tables. You
can generate a mosaic plot using the strucplot command, and another option, assoc
will split up a mosaic plot and lay it out so that it is easier to read.	
	
wildebeest.xtab <- xtabs(COUNT~SEX+DEATH,data=wildebeest)

library(vcd)
	
strucplot(wildebeest.xtab, shade=T)

	
If you reorder the predictors in the contingency table, the axes will flip:
	
wildebeest.xtab <- xtabs(COUNT~DEATH+SEX,data=wildebeest)

strucplot(wildebeest.xtab, shade=T)

	 	

	
	

40	

wildebeest.xtab <- xtabs(COUNT~SEX+DEATH,data=wildebeest)

assoc(wildebeest.xtab, shade=T)

	
	
When you are only dealing with a couple categories, splitting up a mosaic plot into an
association plot probably isn't necessary, but if you have an array of three or more rows
by three or more columns, it can be helpful.

	
	

41	

Correlation
Goodness of Fit :: Continuous Data

Correlation coefficients and tests of correlation are used to assess the degree of
association between two sets of paired data. In essence, if have a set of X (predictor) and
paired Y (response) data, we can then use correlation to examine the degree to which X
predicts Y.

Correlation Coefficients
A correlation coefficient is a type of effect size. It is presented as a number (from -1 to
+1) that measures the degree of association between two sets of numbers. A value of -1
indicates a perfect negative relationship where all variation in Y is explained by X. A
value of +1 indicates a perfect positive relationship where all variation in Y is explained
by X. The most common correlation coefficient is Pearson's r. Pearson's r assumes X and
Y to have a linear relationship. The other two types of correlation coefficient we will look
at are non-linear. These are spearman's rho (ρ) and Kendall's tau (τ).

Linear Correlation: Pearson's r
Pearson's correlation is defined as the ratio of the covariance of X and Y to the geometric
mean of the variances of X and Y. Correlations can range from -1 to 1. The closer the
number is to -1 or 1, the stronger the correlation is. The closer the number is to 0, the
weaker the correlation is. Parametric correlation assumes that both X and Y are normally
distributed. Non-parametric (non-linear) correlation does not make this assumption.
Pearson's correlation coefficient (r) is the most commonly used correlation coefficient. It
assumes linearity of association and is defined as:

r	=	covariance	of	x	and	y	/	square	root	of	the	variances	of	x	and	y	
	

ASSUMPTIONS OF CORRELATION (Pearson)
(1) Both variables are continuous
(2) Both variables are approximately normally distributed
(3) There is a linear relationship between the variables
(4) There is homoscedasticity of the data (equal variance)
(5) Observations must be independent (collected randomly)

Note that the total percentage of variance explained (R2), is literally just Pearson's r
squared. This is important because the correlation coefficient itself does not represent
the percentage of variation explained. If you have r = 0.45 then the percentage of
variation explained is 0.452, which is an R2 of 0.2025, or 20.25%.

	
	

42	

	

(1) Are the variables continuous? (or at least numeric)
Import the dataset swallow-nestlings-blood.csv (remembering to change your working
directory if needed). This is an actual dataset from an honours project.

nestlings <- read.table('swallows-nestlings-blood.csv',
header=T,sep=',')

Check the data:
head(nestlings)
str(nestlings)

We are going to work with Haematocrit (Hct) and Haemoglobin in grams per decilitre
(Hb.g.dL). Both are numeric and continuous. There may be missing data because this is a
real dataset and sometimes birds escape before they are fully measured. A quick but
drastic way to remove all lines that have missing data uses this code:

nestlings<-na.omit(nestlings)

Note that applying an na.omit to a dataset without checking what it did to the dataset is
dangerous. Have a look at the dataset and compare. Did it remove any observations?

head(nestlings)
str(nestlings)

We're now going to use this dataset to check whether haemoglobin (the oxygen carrying
pigment in red blood cells) correlates with haematocrit (packed red blood cell volume as
a percentage of total blood volume). It would be astoundingly strange if these two
variables didn't correlate to some degree, but let's check how strong the correlation
might be.

	
	

43	

(2) Testing for violations of normality of the underlying data
Are both variables approximately normally distributed? A Shapiro-Wilks test is a test of
normality where the null is that the data follows a normal distribution. If P < 0.05 then
the data is not normally distributed.

shapiro.test(nestlings$Hct)
shapiro.test(nestlings$Hb.g.dL)
	
	

	
	

This implies that neither of the two datasets are normally distributed (both P < 0.05).
We'd like to compare the results for a Pearson's r (which expects normality and linearity)
to the non-parametric Spearman and Kendall correlation values for this dataset, so we
will simply proceed. However, if we were planning to publish these results we wouldn't
use the Pearson's r. It isn't appropriate because the assumption that the datasets are (at
least roughly) normally distributed has not been met.
 	

RESULT

 Shapiro-Wilk normality test

data: nestlings$Hct
W = 0.94934, p-value = 1.895e-14

 Shapiro-Wilk normality test

data: nestlings$Hb.g.dL
W = 0.92072, p-value < 2.2e-16
	

	
	

44	

Let's also look at histograms of the data:

hist(nestlings$Hct)
hist(nestlings$Hb.g.dL)

	

	
	

We can adjust the min, max and break values like so:

plot range from 0.0 to 0.9, at 0.01 increments
hist(nestlings$Hct, breaks=seq(0.0,0.9,0.01), col="grey")

plot range from 0 to 20, at 0.25 increments
hist(nestlings$Hb.g.dL, breaks=seq(0,20,0.25), col="grey")
	
	

	
	
The plot of haemoglobin (Hb.g.dL) looks especially skewed. The plot of haematocrit is
not as skewed, but is much too condensed around the mean to be strictly normal.

	 	

	
	

45	

(3) Testing for violations of linearity
We need to construct a linear model to test assumptions of linearity. We use the lm
function to construct a linear model. You can read the tilde (small squiggly line) to mean
'as a function of'. So, this code asks for a linear model (lm) of haemoglobin (Hb.g.dL)
as a function of (~) haematocrit (Hct), using the nestlings dataset (data=nestlings).

swallows.lm <- lm(Hb.g.dL ~ Hct, data=nestlings)

Now, load package	car.	
	
install.pckages("car") # if not already installed
library(car)

Produce a component residual plot to check linearity of the relationship:

crPlots(swallows.lm)

	

If the green line (representing the best non-linear curve of fit) departs from the red line
(a straight line of best fit), then the assumption of linearity has probably not been met.
We already know that the underlying data is not normal, so it is no surprise to discover
that the component residual plot is indicating a violation of linearity.

	
	

46	

(4) Testing for violations of homoscedasticity (equal variance)
We can also use our linear model to check whether the variances of the residuals are
larger at one end of the range of values than the other. We already created a linear model
to check for linearity (above), and we can use the same model here.

Set the plotting window to a 2x2 array (i.e. four plots arranged in a square).
par(mfrow=c(2,2))

Plot four diagnostic plots.
plot(swallows.lm)

	

Return the plotting window to default settings.
dev.off() # this will also clear your plots!

The diagnostic plots check for linearity and equal variance of residuals (Residuals vs
fitted), normal distribution of residuals (Normal Q-Q), linearity and equal variance of
residuals (again) (Scale-Location), and whether there are any outliers in the residuals
(Residuals vs Leverage). For now, let's just focus on the left two graphs, Residuals vs
Fitted and Scale-Location. Both of these graphs should ideally show a (relatively)
straight, horizontal red line (indicating linearity) and no 'wedge' shape in the data
(indicating equal variance). In our case, the relationship is clearly not linear (both red
lines are highly u-shaped), but there is no 'triangle', 'arrowhead' or 'wedge' shape to the
data (it's just an amorphous cloud, which is what we want). So, at least the assumption
of equal variances has probably been met.

	
	

47	

(5) Testing for violations of independence
Although there are some statistical approaches to testing independence of observations,
the most effective way to avoid problems of independence is good experimental design
and clear thinking. Observations are independent if the value of one observation would
not (partially or wholly) predict the value of another observation. In our dataset, we might
actually have a problem with independence. There are haemoglobin and haematocrit
values for multiple nestlings per nest in the study area. Because two or more nestlings
would be under the same conditions (i.e. same parents, same food resources in the
environment), these values probably do represent pseudo-replication of the results. That
is, if we know the Hct of a nestling, then we probably could make a guess as to the likely
range for its siblings in the same nest. If we were planning to publish this data we would
have to either average values to the nest, or use a linear mixed effects model with
NEST.ID as a random effect.

For our purposes, we will simply proceed, but keep in mind that we really are simply
examining the dataset for teaching purposes now. It has violated almost all of our
assumptions, and the results of a Pearson's r linear correlation applied to it will not be
reliable, and probably not even meaningful.	

Plot the data for haematocrit and haemoglobin:
plot(nestlings$Hct, nestlings$Hb.g.dL)

fig	 1.	 Haematocrit	 (Hct)	 and	 haemoglobin	 (Hb)	 (g/dL)	 in	 12	 day	 old	
nestling	welcome	swallows.

	

	
	

48	

The default R plot isn't very attractive. We can adjust colours and point characters
(pch), as well as add a line of best fit using the linear model we created earlier. The
scatterplot will appear first, and then the line of best fit will be added over the top
using the abline function.

plot(nestlings$Hct, nestlings$Hb.g.dL, pch = 20, col =
"grey50", xlab="Haematocrit (%)", ylab="Haemoglobin (g/dL)")
	
abline(swallows.lm, col = "red", lwd=2)	
	

	
fig	1.	Haematocrit	(Hct)	and	haemoglobin	(Hb)	(g/dL)	in	12	day	old	
nestling	welcome	swallows.	Line	in	red	is	a	line	of	best	fit	assuming	
linearity	of	the	relationship.

	
	
pch = 20 # point shape… try other numbers	
col = "grey50" # Colour… try other colours
xlab = "Haematocrit (%)" # Label for the x-axis
ylab = "Haemoglobin (g/dL)" # Label for the y-axis
lwd = 2 # Line width… try other numbers
	
For example:
plot(nestlings$Hct, nestlings$Hb.g.dL, pch = 17, col =
"hotpink2", xlab="Haematocrit (%)", ylab="Haemoglobin (g/dL)")
	
abline(swallows.lm, col = "seagreen4", lwd=5)	

	
	

49	

Calculating a Pearson's r
Pearson's correlation coefficient (r) is the most commonly used correlation coefficient. It
assumes linearity of association and is defined as:

r	=	covariance	of	x	and	y	/	square	root	of	the	variances	of	x	and	y	

We will attach the dataset to make life easier. Attaching a dataset means that R will
always be looking at the dataset and you don't need to keep stating that we are
working with the nestlings dataset.

attach(nestlings)

Calculate variances and covariance:

var(Hct)
var(Hb.g.dL)
var(Hct,Hb.g.dL)

Now we will calculate a Pearson's r correlation coefficient:

var(Hct,Hb.g.dL)/sqrt(var(Hct)*var(Hb.g.dL))

Now we can calculate the Pearson's correlation coefficient using R.

cor(Hct, Hb.g.dL, method = "pearson")

RESULT

> var(Hct,Hb.g.dL)/sqrt(var(Hct)*var(Hb.g.dL))
[1] 0.6571337

> cor(Hct, Hb.g.dL, method = "pearson")
[1] 0.6571337	
	

	
	

50	

A correlation test using Pearson's r
Correlation tests are not used very often in biological sciences, although especially for
non-linear associations (Spearman and Kendall's), these tests should perhaps be used
more often. Correlation tests are so infrequently used in biology that if you do use a
correlation test, you may have to reference it. Otherwise a reviewer may not even know
what it is.

attach(nestlings)
cor.test(Hct, Hb.g.dL, method = "pearson")

The P value for a Pearson's correlation test should be exactly the same as for a simple
regression analysis with one predictor and one response (which are more frequently used
in biology). The test above gives a test statistic (t), degrees of freedom (df) and P value
(p-value). There is also a 95% confidence interval for the range of the Pearson's r value
(in this case we have 95% confidence that it is between 0.610 to 0.700). The estimated
Pearson's r is also provided. If you reported this in a results paragraph it might read like
this:

There	was	a	significant	positive	relationship	(r	=	0.657)	between	haemotocrit	(%)	
and	haemoglobin	(g/dL)	in	12	day	old	house	swallows	(correlation	test:	t	=	22.6,	
df	=	673,	P	<	0.001).	

Remember that a P value of 2.2e-16 is actually 0.00000000000000022. There is no point
in reporting P values below 0.001, so we just state this was significant at < 0.001.

Referencing the test? How do we find the appropriate reference? Luckily for us, the help
function in R will usually have academic references listed. Use this command:
?cor.test

RESULT

> cor.test(Hct, Hb.g.dL, method = "pearson")

 Pearson's product-moment correlation

data: Hct and Hb.g.dL
t = 22.616, df = 673, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 0.6120200 0.6979844
sample estimates:
 cor
0.6571337	
	

	
	

51	

Non-linear correlation coefficients
Spearman and Kendall correlation coefficients are both forms of ranking coefficients
that allow us to obtain correlation coefficients for non-linear and non-normally
distributed relationships.

ASSUMPTIONS OF CORRELATION (Spearman & Kendall)
(1) Both variables are at least ordinal (counts & continuous are ok)
(2) Scores of variable X must be montonically related to variable Y
(3) Kendall is preferred to Spearman (better statistical properties)
(4) Observations must be independent (collected randomly)

(1) Testing for violations of ordinal numbers
What does 'at least ordinal' mean? Many non-parametric tests (that is tests that make no
assumptions about distributions of data), do require data to be 'at least ordinal'. In an
ordinal series of data numbers don't necessarily need to be on the same scale but a
higher number does need to represent a higher value. So, for example, if we have five
forest fragment of a = 5 ha, b = 6.1 ha, c = 10 ha, d = 12.2 ha and e = 300 ha we could
convert this to an ordinal series of a = 1, b = 2, c = 3, d = 4 and e = 5. Obviously the
information in the original measurement has been lost, but non-parametric tests often
don't care about relative differences anyway. They usually are only interested in which
of two values is higher. Before conversion to a scale, the difference between fragments
e and d was a 25x difference, and the difference between c and d was a 1.2x difference.
Reframing these values as an ordinal scale removes the scale differences between
variables but retains their ordinal positions. That is, d is still smaller than e but larger
than a, b and c.

Anyway, for your purposes, you are extremely unlikely to ever have datasets that are not
ordinal. You would need to have a quite strange set of data where 8 might be higher than
5 in one instance but lower than 5 in another instance.

	
	

52	

(2) Testing for violations of a monotonic relationship
What does monotonic mean? A monotonic relationship does not need to be linear but it
does need to be the case that as variableX increases, variable Y also increases or
decreases in a consistent way. Distributions that are u, or n shaped are not monotonic.

(3) Kendall is preferred to Spearman
Really? Why are we bothering looking at Spearman then? Although arguably Kendall's
tau is simply mathematically preferable to Spearman's rho, some statisticians will advise
that for small datasets (<50) it is better to use Spearman's, whereas if a dataset is 50 or
larger, we would use Kendall's. This may be a matter that your supervisor (or an editor
or reviewer) may have an opinion on, so both methods are presented. Realistically,
however, differences between Spearman and Kendall correlation coefficients tend to be
reasonably small. If you do find that the difference between the coefficients is large
(more than about 0.1), then look at the size of the dataset, and opt for Spearman for
smaller (n < 50), and Kendall for larger (n > 50) datasets.

(4) Violations of independence
This again? Yes. Independence of observations is an assumption of all statistical tests. It
is best to be sure your experimental designs are well thought out.	
	
	 	

	
	

53	

Pearson's, Spearman's and Kendall's correlations
Let's obtain all three correlation coefficients and compare them.	
	
attach(nestlings)
	
When you attach data for the second (third, fourth etc) time, R will save a bit of memory
space by 'masking' columns from previous attaches. The long screed of red 'error'
message isn't an error at all. It's just telling you that some columns are being masked
from an earlier attach.	
	
cor(Hct, Hb.g.dL, method = "pearson") # parametric
cor(Hct, Hb.g.dL, method = "spearman") # non-parametric	
cor(Hct, Hb.g.dL, method = "kendall") # non-parametric	
	
detach(nestlings) # to keep our working space clean
	
	

	

We already know that this dataset isn't highly suitable for the linear (Pearson) correlation
coefficient. But the coefficient for Spearman and Kendall are quite different (over 0.1
apart). Which should we choose? As this is a large set of observations (>50), the Kendall
is preferable. This leaves us with the Kendall's tau of 0.554.

RESULT

> cor(Hct, Hb.g.dL, method = "pearson") # parametric
[1] 0.6571337

> cor(Hct, Hb.g.dL, method = "spearman") # non-parametric
[1] 0.7048725

> cor(Hct, Hb.g.dL, method = "kendall") # non-parametric
[1] 0.5542297	

	
	

54	

Spearman's and Kendall's correlation tests
This is similar to the code we used for the Pearson's correlation test, but with the method
replaced with "spearman" or "kendall".	

attach(nestlings)

cor.test(Hct, Hb.g.dL, method = "spearman")	
cor.test(Hct, Hb.g.dL, method = "kendall")	

The way Spearman's rho works is by ranking the observations and looking for a trend in
the ranks. This means that this coefficient will encounter (slight) problems if there are
ties in the ranks. However, unless your P value is close to the marginal 0.04-0.05 range
you probably don't need to worry too much about this error message.

In this instance, though, we've already established that we prefer the Kendall test
anyway, so the ties are fine (although, be warned that Kendall's tau will also produce
errors for ties when n < 50).

RESULT

> cor.test(Hct, Hb.g.dL, method = "spearman")

 Spearman's rank correlation rho

data: Hct and Hb.g.dL
S = 15128000, p-value < 2.2e-16
alternative hypothesis: true rho is not equal to 0
sample estimates:
 rho
0.7048725

Warning message:
In cor.test.default(Hct, Hb.g.dL, method = "spearman") :
 Cannot compute exact p-value with ties

> cor.test(Hct, Hb.g.dL, method = "kendall")

 Kendall's rank correlation tau

data: Hct and Hb.g.dL
z = 20.712, p-value < 2.2e-16
alternative hypothesis: true tau is not equal to 0
sample estimates:
 tau
0.5542297	

	
	

55	

How would you present this in a results section? It's preferable to use the tau (τ) or rho
(ρ) symbols rather than the words spelled out, but otherwise, it is similar to how we
presented the Pearson results above. In this case:

There	was	a	significant	positive	relationship	 (τ	=	0.554)	between	haemotocrit	
(%)	and	haemoglobin	(g/dL)	in	12	day	old	house	swallows	(Kendall's	correlation	
test:	z	=	20.7,	n	=	675,	P	<	0.001).	

We included an n because Kendall's correlation test doesn't use degrees of freedom. We
can obtain this by checking the length of one of the columns (any column will do).

length(nestlings$Hct)

RESULT

> length(nestlings$Hct)
[1] 675	

	
	

56	

Correlations: strong, weak, positive and negative
We talk about correlations being ‘strong’ or ‘weak’ and ‘positive’ and ‘negative’. The
dataset corr_data has been set up to demonstrate what these terms mean:

corr.data <- read.table('corr_data.csv',header=T,sep=',')

par(mfrow=c(3,2)) # set the plotting window to 3x2 plots

plot(Y1~X1, data = corr.data, ylim = c(0,30))
abline(lm(Y1~X1, data = corr.data), col = "red")
cor(corr.data $X1, corr.data $Y1, method = "pearson")
mtext("High r, positive slope: r = 0.996", side = 3, adj = 0)

plot(Y2~X2, data = corr.data, ylim = c(0,80))
abline(lm(Y2~X2, data = corr.data), col = "red")
cor(corr.data $X2, corr.data $Y2, method = "pearson")
mtext("Low r, positive slope: r = 0.331", side = 3, adj = 0)

plot(Y3~X3, data = corr.data, ylim = c(0,30))
abline(lm(Y3~X3, data = corr.data), col = "red")
cor(corr.data $X3, corr.data $Y3, method = "pearson")
mtext("High r, positive slope: r = 0.785", side = 3, adj = 0)

plot(Y4~X4, data = corr.data, ylim = c(0,160))
abline(lm(Y4~X4, data = corr.data), col = "red")
cor(corr.data $X4, corr.data $Y4, method = "pearson")
mtext("High r, negative slope: r = -0.999", side = 3, adj = 0)

plot(Y5~X5, data = corr.data, ylim = c(0,400))
abline(lm(Y5~X5, data= corr.data), col = "red")
cor(corr.data $X5, corr.data $Y5, method = "pearson")
mtext("Moderate r, negative slope: r = -0.666", side = 3, adj
= 0)

plot(Y6~X6, data = corr.data, ylim = c(0,160))
abline(lm(Y6~X6, data = corr.data), col = "red")
cor(corr.data $X6, corr.data $Y6, method = "pearson")
mtext("Low r, negative slope: r = -0.104", side = 3, adj = 0)

The terminology can be a bit confusing because when someone talks about a ‘strong’
correlation, usually what is meant is that the correlation coefficient (r) is high. A strong
positive correlation would be one with a very tight relationship (the data points all cluster
around the line of best fit) but the slope might not be very steep so that the biological
effect might not be especially strong.

dev.off() # return plotting window to defaults
 # note that this will 'blank out' your figures
 # only run dev.off to clear your plotting screen

	
	

57	

fig	2.	Scatterplots	demonstrating	strong	and	weak	correlations.	Note	that	a	 'strong'	
correlation	 only	 indicates	 that	 the	 points	 fall	 close	 to	 a	 line	 of	 best	 fit.	 A	 strong	
correlation	could	have	quite	a	weak	slope.

	
	

58	

Variability Tests
Regression Analysis :: t-tests :: ANOVAs etc

Tests that use variability as a measure of 'noise' in the data are among the most
commonly used and reported types of statistical tests. These include regression analysis,
t-tests and Analyses of Variance (ANOVAs). These tests are often treated as distinct tests,
but actually they all fundamentally act in the same way. All of them use variance as a
measure of uncertainty in the data to decide whether a pattern might have occurred by
chance. A Student's t-test will give you exactly the same P value as an ANOVA using the
same data. Regression analyses and ANOVAs (and related tests) are all just forms of linear
model, and you'll find they also give the same P values for the same datasets.

A quick note on terminology: Just a warning. I am using 'variability family of tests' here to mean tests
that are based on a signal:noise ratio, where the 'noise' is some measure of variance. There are also
'variance tests' or 'tests of variance', that are used to test for differences in variance, such as a Bartlett
test or a Fligner-Kileen test. Such tests can be used to test hypotheses of differing variances, but are
more often used for testing the assumption of equal variance. I've added this note just to try and head
off confusion about what I mean exactly by 'the variability family of tests' (i.e. we're not talking about
Bartlett tests, or similar, here).

Table 1. Types of Predictor, Covariate and Response variables and the appropriate test for each. A covariate
is usually not the predictor of interest but is included to control for some other variable that is likely to be
important. Covariates are typically numeric, and often continuous. ANOVAs and ANCOVAs are both forms
of general linear model (LM). Because of computing power today, highly complicated GLMs can be
generated using many Predictors that are both discrete and continuous.

Predictor Levels Covariate Response Test
Continuous NA Numeric Continuous Regression

Discrete 2 No Continuous t-test
Discrete 2+ No Continuous ANOVA
Discrete 2+ Numeric Continuous ANCOVA

	
	

59	

What is a covariate?
A covariate is a numeric (often continuous) variable included in a general linear model
that helps explain variation, but is usually not the variable of interest. Here's an example
of how a covariate can be helpful. Let's imagine you measured stress hormones in people
living in Calcutta and in the Indian countryside with the hypothesis that living in the city
would be more stressful (predictor is discrete with two levels: city or country). Possibly,
you might not find a relationship unless you took into account a third variable, the time
a person has been living in a city. People who have just moved to a city might find it
stressful, whereas people who were born in the city and grew up there might not find it
stressful at all. In this case, the covariate helps explain the dependant variable (stress
hormones in the blood) and it might allow us to see whether there is an effect of city
living on stress, albeit one that is time dependent.

What is a discrete variable?
Discrete variables is an umbrella term for any variable that exists as a set of discrete
parts. For t-tests and ANOVAs, the discrete variable we would most typically be working
with would be nominal (also called categorical), where the predictor is entered into a
spreadsheet as a set of words: Low, Medium, High, or, Male, Female, or Present, Absent.
In R these should appear as the 'factor' data type, although they may import as
'characters' instead which can cause problems. After importing a dataset that has
nominal data it is sensible to make sure all the nominal columns are actually factors by
looking at the structure of the data. If something is not a factor, you can tell R that it
should be a factor, as below.

Check the structure of the dataset:
str(yourdata)

Change a variable to a 'factor' in R:
yourdata$your_variable <- as.factor(yourdata$your_variable)

Change a variable to a 'number' in R:
yourdata$your_variable <- as.numeric(yourdata$your_variable)

Note that the second line of code will only work if the variable could actually be a
number. If a column of data contains letters, words or symbols, R will not be able to turn
the data into numbers.

	
	

60	

How is a t test comparison made?
The key point of the t-distribution is that it changes shape with different degrees of
freedom. By comparing two t-distributions we can calculate the difference between the
means and divide this by the noise (variance) of the distributions. Classically, especially
before computers, t-tests were calculated using the assumption that both populations
had the same variance (an equal variance Student's t-test), as that makes the equation
much easier to work out. Now, t-tests are more sophisticated and the degrees of freedom
are typically adjusted to account for differences in variance between the two samples (an
unequal variance Welch's t-test).

signal	/	noise		 t	=	difference	of	group	means	/	variability	of	groups	
	 	 	 t	=	Xmean	-	Ymean	/	SE(X	-	Y)	

The t-test signal to noise ratio is called a t-statistic. Whether it is positive or negative
isn't important because that simply depends on which mean happened to be larger. In
the past, you would take the non-signed t-statistic, decide on a significance level (usually,
alpha = 0.05) and look up significance on a table. Current statistical programs can provide
exact P-values for a test instead of estimates from a table.

So, in essence, what the test is doing is 1) working out a signal to noise ratio (the t-value
= how strong is the pattern here?); 2) establishing what the distribution for possible t-
values should look like based on your sample size (higher df = thinner tails, which implies
greater confidence about where our t-value falls); 3) checking our actual t-value against
the distribution of possible t-values. If there is a 5% or less chance of getting out t-value
by chance (given the null were true), then we take that to be a significant result.

Figure 1. An example of a table for t-test results with different critical levels for significance at the 0.20,
0.15, 0.10, 0.05, 0.01, 0.005, 0.001 and 0.0005 levels (reading across the columns) and degrees of freedom
from 1 to 9 (reading down the rows). If a t-value equals or is larger than the critical value for a given df
and significance level, then the result would be significant at that level. Typically, the critical value α =
0.05 would be used, which corresponds to the column under t0.05.

	
	

61	

Figure 2. Two populations of dolphin measured for morphometric traits. On the left, difference between
the means of groups is small and the variability (noise) is large. Probably, we would find the difference is
non-significant (P > 0.05) if we ran a t-test. On the right the difference between means of groups is large
and in comparison the variability (noise) is relatively small. Probably, we would find the difference is
significant (P < 0.05) if we applied a t-test.

	
	

62	

Assumptions of variability tests
Because t-tests, regression analyses and ANOVAs all function in the same way, they are
all concerned with assumptions of normality and equal variance. Although you can get
away with slight departures from normality (these tests are actually relatively robust to
small problems with normality), you will very much run into trouble if you have
increasing variances with higher means. So, what do you do, if assumptions are not met?

Usually, the first step is to try transforming the response variable. Any mathematical
operation that manipulates the data as a whole so that it retains its overall order and
sequence but the distribution is changed (usually into a normal distribution). The object
of transformation is usually to change non-normal or non-linear data into normal or
linear data. A log transformation for example, logs all the response values. A square root
transformation takes the square root of all the response values. Sometimes we transform
predictors as well, but that is unusual and probably if you think you need to transform
predictors actually you need to rethink if you are using the correct statistical analysis.

Once you apply transformations, new columns will be created and these new columns
become your response variables. A transformation changes the 'shape' of the data but
not the 'order' of the observations. So, if we had a series of observations that looked
like this…
	

1
2
5
14
106
2205

	
We might decide they need to be transformed to be more easily analysed. They might
be transformed like this, using a log transformation:
	

Original value Log transformed value
1 0.00
2 0.30
5 0.70

14 1.15
106 2.03

2205 3.34
	
Notice how the numbers have been changed so that they are closer together, but the
order hasn't changed. The largest value is still the largest. The smallest value is still the
smallest.

	
	

63	

Transformations
Researchers talk about 'applying a transform' or 'applying a transformation',
'transforming the data' or 'working with transformed data'. These all mean the same
thing: the data has been changed mathematically to make it more normal and/or more
linear.

What	do	we	need	to	know	at	a	basic	level?	

• Typically, only the RESPONSE (dependent variable) is transformed
• Transformation involves loss of information
• Better not to do if you can avoid it (bit of a trade-off)
• Never graph transformed data in a final report (ok to do this in an exploratory analysis

for your own benefit) (even if you use transformed data in your tests)
• Sometimes transformation is unavoidable

Code for Transformations
To make life easier we can set up a dummy variable called x and drop a RESPONSE into
it like so:

x <- yourdata$RESPONSE

Now apply various transformations

yourdata$INVR <- 1/x # Reciprocal transformation
yourdata$NEGINV <- -1/x # Negative reciprocal transformation
yourdata$SQUARED <- x^2 # Power transformation
yourdata$CUBERT <- x^(1/3) # Cube root transformation
yourdata$SQRT <- sqrt(x) # Square root transformation
yourdata$LOG <- log(x) # Log base e. Cannot be applied to zero
yourdata$LOG10 <- log10(x) # Log base 10 Cannot be applied to zero
yourdata$ASQRT <- asin(sqrt(x)) # Arcsine square root transformation
 # Only useful for percentages (0.01-0.99)
yourdata$LOGIT <- log(x/(1-x)) # Logit transformation
 # Only useful for percentages (0.01-0.99)
yourdata$FOLD1 <- sqrt(x)/sqrt(1-x) # Square root folded transformation
 # Only useful for percentages (0.01-0.99)
yourdata$FOLD2 <- log(x)/log(1-x) # Log folded transformation
 # Only useful for percentages (0.01-0.99)
yourdata$FT <- sqrt(x) + sqrt(x+1) # Freeman-Tukey transformation

	
Now look at your dataset:

head(yourdata)
View(yourdata)
str(youdata)
	 	

	
	

64	

Note how the transformations will have been added as columns to the end of your
dataset? These are your potential response variables now. You need to check if they have
met assumptions (by checking boxplots and residuals of models etc). Generally speaking
you’ll want to pick the transformation that best meets assumptions, although sometimes
you might decide to pick a simpler transformation over a more complex transformation
if the difference between them isn’t substantial. Picking the best transformation is a bit
of an art rather than something that has hard and fast rules. Often a lot of boxplots and
histograms will be needed to work out which transformation is preferable.

Advanced Transformations
If all of the above transformations fail to meet the assumptions of the data you can try
two advanced transformations:

BOXCOX TRANSFORMATION

install.packages("MASS") # install library from web
library(MASS) # load library

fit <-lm(RESPONSE~TREATMENT,data=yourdata)
bc <- boxcox(fit)
lambda<-with(bc, x[which.max(y)])
yourdata$bc <- ((x^lambda)-1)/lambda)
boxplot(bc ~ TREATMENT, data = yourdata)

RANK NORMAL TRANSFORMATION

install.packages("GenABEL") # install library from web
library(GenABEL) # load library

yourdata$RANK.NORMAL <- rntransform(yourdata$RESPONSE)

Are there any types of data that are always transformed?

• Percentages and ratios often need to be transformed
• Arcsine square root transformations are often used for percentages
• Log transformations are often used for ratios
• Square root transformations are also used for ratios, especially if some values

are zero.

What if no transformation seems to help?
If none of the transformed values seem to fit assumptions of a test, then possibly you are
using the wrong test. If you have a dataset where the response is a count and there are
a lot of zeroes, then no amount of transformation will make it fit ANOVA assumptions
and you need to start thinking about other tests such as GLMs.

	
	

65	

t-tests
We usually think of a t-test as comparing two samples comprised randomly selected
individuals from a population. However, one-sample t-tests and paired t-tests also exist.
We will start with a one sample t-test.

One sample t-test
A one-sample t-test provides confidence intervals for a single set of data points. The test
assumes the comparison dataset is normally disturbed and that the observations are
independent. It can be used to test whether a single data point falls within a range of
expected values.

ASSUMPTIONS OF ONE SAMPLE T-TESTS
(1) The comparison datasets is normal
(2) Observations must be independent (collected randomly)

Import the adult house swallows dataset:
swallows <- read.table('swallows-adults.csv',
header=T,sep=',')

Check the data:
head(swallows)
str(swallows)

Run a one sample t-test on Wing Lengths of the adult swallows:
t.test(swallows$WingL)

So we appear to have a significant result. But significant by comparison to what? Exactly
what is this test reporting?

RESULT

 One Sample t-test

data: swallows$WingL
t = 475.39, df = 110, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
 112.9416 113.8872
sample estimates:
mean of x
 113.4144
	

	
	

66	

 One Sample t-test

data: swallows$WingL
This is simply a reminder what data we used for the t-test.

t = 475.39, df = 110, p-value < 2.2e-16
The t-value (signal to noise ratio), degrees of freedom, and p-value. Although all three of these
values would be reported, typically, only the P value would be discussed.

alternative hypothesis: true mean is not equal to 0
This is telling us that the test is comparing the wing lengths to a value of zero. That is, it is
asking if the true mean of the dataset is zero. This is not especially useful or interesting. We'll
look at how to modify this below.

95 percent confidence interval:
 112.9416 113.8872
The 95% confidence interval for mean of wing lengths of swallows. We have a 95% confidence
that the mean is no lower than 112.9 mm and no higher than 113.9 mm.

sample estimates:
mean of x
 113.4144
The estimated mean of the swallow wing lengths in mm.

How might we use a one-sample t-test. The test is useful if you only have a single value
and you want to compare it to a sample. Imagine you caught a purple swallow. It looks
like your blue welcome swallows except for feather colour. You are curious as to whether
it is a vagrant species, or maybe a mutation, so you take measurements. Perhaps we want
to compare the wing length of the purple swallow to the sample of blue swallows. We
can use mu in the t-test code to change the value for comparison. Assume you obtained
a wing length of 113.1 mm for the purple swallow.

t.test(swallows$WingL, mu = 113.1)

Try running the above test and determine whether the purple swallow had a significantly
different wing length to the estimated mean wing length of welcome swallows. As well
as looking at the P value, have a look at the confidence interval for the welcome sallow
wing lengths. Did the confidence interval change from what we obtained above? Why or
why not?

	
	

67	

Two sample t-test (unpaired)
A two-sample t-test allows you to compare the means of two samples and determine
which (if either) is higher. We will use this data to check masses of swallows by sex.

ASSUMPTIONS OF STUDENTS T-TEST
(1) Observations must be independent (collected randomly)
(2) Both datasets are normal
(3) Equal variances

The presence or absence of a broodpatch on a swallow indicates if it is a female or male.
Females brood but males do not (or only seldom), so females acquire a discoloured
brooding patch whereas males tend not to. Using the adult swallows dataset we want to
investigate whether male or female adult welcome swallows are heavier on average. We
will use a two-sample t-test to test this.

First, recheck your data. The BROODPATCH value needs to be factor. Use	
str(swallows)	to check it.

The researcher has recorded the data as a set of binary numbers (1 = no and 2 = yes) but
R doesn't know that these are supposed to be two levels of a single factor. We can change
this using a line of code.

swallows$BROODPATCH <- as.factor(swallows$BROODPATCH)

Now rerun the	str(swallows)	command and check that BROODPATCH has changed
to a factor with 2 levels. The next thing to do is check the assumptions. Now we will
look at assumptions.

(1) Datasets must be independent (collected randomly)
There are no tests for independence that are especially useful. Really, this is a matter of
good experimental design and understanding what problems are associated with
pseduoreplication.	
	

	
	

68	

(2) Are the datasets normal?
Check boxplots of the data. If the boxplots are (reasonably) symmetrical they are
probably at least bell-shaped, although may not be strictly normal. 	
	
boxplot(MASS~BROODPATCH,data=swallows)
	
There are a number of different ways to look at each level within the factor separately
(i.e. look at birds with brood-patches and without brood-patches) but the most
straightforward is simply to subset the data. We'll attach the dataset to make the code
easier (when a dataset is attached R assumes you are working with that dataset unless
told otherwise… this reduces the need to keep typing the name of the dataset over and
over).
	
attach(swallows)	
brood.yes <- subset(swallows, BROODPATCH=='2')
brood.no <- subset(swallows, BROODPATCH=='1')
	
Check histograms of the data.
	
hist(brood.yes$MASS)
hist(brood.no$MASS)
	
You can also use a Shapiro-Wilk's test of normality, where we would take P < 0.05 to
indicate that the assumption of normality may have been broken. However, distribution
tests, such as Shapiro-Wilks, tend to be quite aggressive and they often diagnose
distribution problems when the data is probably fine for a t-test or similar. Visual
assessments of boxplots and histograms is usually preferable.
	
shapiro.test(brood.yes$MASS)
shapiro.test (brood.no$MASS)
	
detach(swallows)	
It is usually good practise to detach your dataset after working with it.

	
	

69	

Let's look at our plots. The boxplots don't look too bad, but the histograms are potentially
not normal.	
	

	

Keeping in mind that Shaprio-Wilks tests can tend to indicate that most biological data
is non-normally distributed , let's check these distributions and see what the results
are. Where P<0.05, we would take this to be evidence that the distribution may not be
normal.

RESULT

> brood.yes <- subset(swallows, BROODPATCH=='2')
> shapiro.test(brood.yes$MASS)

 Shapiro-Wilk normality test

data: brood.yes$MASS
W = 0.96923, p-value = 0.1472

>
> brood.no <- subset(swallows, BROODPATCH=='1')
> shapiro.test(brood.no$MASS)

 Shapiro-Wilk normality test

data: brood.no$MASS
W = 0.94083, p-value = 0.01106
	
	

	
	

70	

The distribution of masses for swallows without a brood-patch is a bit suspect. At this
point I would consider using a non-parametric equivalent of a t-test (Mann-Whitney U:
wilcox.test in R). However, we are going to use this data for non-parametric tests
later, and it would be good to compare the results to the t-test results. Let's proceed to
checking equal variances.

(3) Equal variances?
Check boxplots of the data. If the boxplots are (reasonably) symmetrical and (about) the
same height, then the variances are probably equal. You can also try using a test of equal
variances. The Bartlett test is suitable for this purpose.	
	
boxplot(MASS~BROODPATCH,data=swallows)
bartlett.test(MASS~BROODPATCH,data=swallows)

We already have the boxplot (above), so let's look at the result of the Bartlett Test.

The assumption of variances doesn't seem to be met here. A significant P value (P <
0.05) is usually taken to indicate that the variances may not be equal. However, rather
than resort to a non-parametric test (or transformation), we can use a different sort of t-
test, the Welches unequal variance t-test, which is actually the default in R.

ASSUMPTIONS OF WELCH'S T-TEST
(1) Observations must be independent (collected randomly)
(2) Both datasets are normal

The Welch's t-test penalised the degrees of freedom for unequal variances. Also, as it
turns out, if the variances are perfectly equal a Welch's t-test collapses into a Student's
t-test anyway. This means that you might as well just always use the Welch's t-test. We'll
look at how to run both though.
	 	

RESULT

> bartlett.test(MASS~BROODPATCH,data=swallows)

 Bartlett test of homogeneity of variances

data: MASS by BROODPATCH
Bartlett's K-squared = 5.0971, df = 1, p-value = 0.02397	
	

	
	

71	

Run a classic equal variances (Student) t-test.

t.test(MASS~BROODPATCH,data=swallows, var.equal=TRUE)
	

	

Run a Welch's t-test that allows for unequal variances. By leaving out the command
var.equal=TRUE, the test will default to a Welches test.

t.test(MASS~BROODPATCH,data=swallows)
	

	

You can see that there is a slight difference in t-value, and the degrees of freedom have
been penalised by the Welch's t-test. They are 109 for the equal variance t-test, but 104.2
for the Welch's. The P value is different, but in both instances the P value is strongly
significant. The Welch's t-test would be the preferable t-test to use here (variances are
clearly not equal), and if reported in brackets in a Results section it would look something
like this (t = -4.72, df = 104.2, P < -.001).

RESULT

 Two Sample t-test

data: MASS by BROODPATCH
t = -4.6563, df = 109, p-value = 9.134e-06
alternative hypothesis: true difference in means is not equal
to 0
95 percent confidence interval:
 -0.9822838 -0.3957253
sample estimates:
mean in group 1 mean in group 2
 13.70755 14.39655	
	

RESULT

 Welch Two Sample t-test

data: MASS by BROODPATCH
t = -4.7206, df = 104.2, p-value = 7.353e-06
alternative hypothesis: true difference in means is not equal
to 0
95 percent confidence interval:
 -0.9784383 -0.3995708
sample estimates:
mean in group 1 mean in group 2
 13.70755 14.39655	
	

	
	

72	

Effect sizes for t-tests
It is generally a good idea to report an effect size as well as the results of any statistical
test. For t-tests, the most straightforward effect size is simply the difference between the
two means (making sure to make it clear which mean is higher). A standardised effect
size for t-tests, however, does exist, and is called a Cohen's d.

The Cohen's d is a measure of difference in means between two groups given the
standard deviation as a whole. A Cohen's d isn't often used for publication in biological
sciences journals (although psychologists like to use it), but it is certainly acceptable in
university reports as a way to summaries the strength of difference between two
populations.

install.packages("lsr")
Download library from the internet.
Only needed if you haven't already installed the package

library(lsr)
cohensD(MASS~BROODPATCH,data=swallows)

[1] 0.8848034

The author of the statistic, Cohen, suggested that d = 0.2 be considered a 'small' effect
size, 0.5 represents a 'medium' effect size and 0.8 a 'large' effect size. This means that
where you obtain a Cohen's d of <0.5, you should consider the difference to be
biologically modest, even if the difference is also significant. The effect we obtained,
where d = 0.88 would suggest that there is a large effect of mass as a function of swallow
sex.

	
	

73	

	

Further Example: Tails

Some researchers have suggested that swallow tails may serve a sexual selection
function. If this were the case we might expect tail lengths to differ among males and
females. Import the adult swallows dataset if you haven't already.
	
Import the adult swallows dataset:
swallows <- read.table('swallows-adults.csv',
header=T,sep=',')

Check the data:
head(swallows)
str(swallows)

t-test steps
1) Create of boxplot of tail length (mm) by brood-patch (a proxy for sex where 1 = no
brooding patch (male), and 2 = brooding patch (female)).

boxplot(TailL~BROODPATCH,data=swallows)	

2) Check the assumption of normal data
3) Check the assumption of equal variances
4) Decide which test is appropriate and run the appropriate test
5) Check the results

	
	 	

	
	

74	

Two sample t-test (paired)
Paired t-tests are more powerful than unpaired tests because in a paired experimental
design some of the noise in the background is eliminated by pairing controls and
treatments together in the same conditions.

ASSUMPTIONS OF PAIRED T-TEST
(1) Observations must be independent (collected randomly)
(2) Both datasets are normal
(3) Equal variances (there is no Welch's version of a paired test)
(4) Data is from a paired experimental design

	
	
Figure	3.	Paired	experimental	designs	are	more	powerful	than	random	two-sample	designs	and	a	paired	t-test	
takes	this	into	account.	White	boxes	=	control	sites.	Red	boxes	=	treatments.	
	
Import the mean seedling height paired and unpaired data sets. These contain mean
measurements of seedlings in 400 m2 quadrats measured in forest plots. The hypothesis
being tested is that the plants in this forest are boron limited. Boron is an element that
is essential to plant growth and some soils are low in boron. At treatment sites boron
has been applied, whereas at control sites an inert powder has been applied.

Import the mean seedling height datasets:
	
msh.p <- read.table('msh-paired.csv',header=T,sep=',')
msh.u <- read.table('msh-unpaired.csv',header=T,sep=',')

	
	

75	

Look at the way the data is laid out. Paired and unpaired datasets have quite different
expectations around data layouts. We're going to skip assumption testing just for the
sake of time, but remember that you must test assumptions if you plan to report results.
View(msh.p)
View(msh.u)	

Run a Welch's t-test, allowing for unequal variances on the unpaired data:
t.test(MSH.400m2~TREATMENT, data=msh.u)
	

	
	
Now run a paired t-test on the paired data:
t.test(msh.p$CONTROL, msh.p$TREATMENT, paired=T)

	
	
These data sets are exactly the same except that one is paired and the other is not. What
are the P-values that you obtained? Is one result significant when the other is not? Why
is this the case? What does pairing do to the 'power' of a test?	 	

RESULT

 Welch Two Sample t-test

data: MSH.400m2 by TREATMENT
t = -0.9364, df = 21.978, p-value = 0.3592
alternative hypothesis: true difference in means is not equal
to 0
95 percent confidence interval:
 -1.2296869 0.4646869
sample estimates:
 mean in group control mean in group treatment
 4.495833 4.878333	
	

RESULT

 Paired t-test

data: msh.p$CONTROL and msh.p$TREATMENT
t = -3.4057, df = 11, p-value = 0.00587
alternative hypothesis: true difference in means is not
equal to 0
95 percent confidence interval:
 -0.6296955 -0.1353045
sample estimates:
mean of the differences
 -0.3825	

	
	

76	

Regression Analysis
Simple linear regression generates a mathematical model that relates the magnitude of
one variable to that of another. The general equation of a straight line is:

y	=	a	+	bx	

…where a is the y–intercept (value of x when y = 0) and b is the slope of the line (rate at
which y changes per unit change in x). Importantly, when the slope of the line (i.e., b)
equals zero, there is no relationship between the response (dependant) (Y) and predictor
(independent) (X) variables. Linear regression summarises how the average values of one
variable (the dependent or response variable) vary across a range of subpopulations
defined by a linear function of the other variable (the independent or predictor variable).

The value of y when x is zero is equal to a. This is the intercept on the vertical axis.

y	=	a	+	bx	
y	=	a	+	b	*	0	
y	=	a	+	0	
y	=	a	

The value of a when y equals zero is -bx. This is the intercept.

y	=	a	+	bx	
y	-	bx	=	a	
0	-	bx	=	a	
-	bx	=	a	

ASSUMPTIONS OF LINEAR REGRESSION
(1) Residuals are normally distributed
(2) Residuals must be independent (collected randomly)
(3) Residuals have equal variances (homoscedasticity)
(4) The relationship of x and y should be (relatively) linear

	
	

77	

Assumptions of Linear Models

One set of tests that require fairly involved assumption testing are linear models. These
include regression analyses, ANOVAs and ANCOVAs, and all the variants thereof. The
following diagram provides a walk-through for testing linear model assumptions. Note
that for a linear model it is the residuals of the model that need to meet assumptions of
normality and equal variance, not the original data.
	

	

Note that the above diagram always applies to linear models, but if you have multiple
predictors then you will have a couple of additional steps as well 1) checking that
predictors are not correlating and 2) checking for significance of interaction terms.

	
	

78	

Regression Analysis Example
We're going to use our nestling swallows dataset again, but this time we will test
whether haemoglobin concentration in the blood (an indicator of health and parasite
levels) has an effect on the mass of house swallow chicks at day 12 after hatching (an
indicator of growth rate). Our hypothesis is that:

• House swallow chicks with a higher Hb will have a higher mass at day 12

	
Figure	4.	Plot	of	mass	(g)	of	house	swallow	chicks	at	day	12	after	hatching	against	haemoglobin	

concentration	in	the	blood	(g/dL).	

Given the hypothesis we have proposed above, what would the null be?

Testing Assumptions
Sometimes you will find advice about testing assumptions of the underlying data for a
regression analysis. Strictly speaking, the assumptions of a regression analysis apply to
the residuals (values above and below expected) of the linear model, not the original
data. Checking the residuals is most easily done in R by using diagnostic plots.

Wait… shouldn't we test residuals to the means for t-test then?
Actually, you could if you wanted to. A t-test is such a simple model, though, that in
principal the result of assumption tests applied to the original data should be the same
as the assumption tests applied to residuals taken to the means. Because testing
residuals taken from the means would be a bit more involved, there is a tendency to just
check the original data instead.

	
	

79	

Diagnostic Plots
One very helpful feature of R is that it will generate diagnostic plots that help determine
whether or not data is normal and whether there are outliers that are over-influencing
the data:

nestlings <- read.table('swallows-nestlings-blood.csv',
header=T,sep=',')

Set your window so that it will accept four plots at once (otherwise you need to click
through the graphs):
par(mfrow = c(2, 2))

Plot the linear model diagnostic plots. This is done simply by plotting the model.
plot(lm(MASS.DAY12 ~ Hb.g.dL, data = nestlings))
	
You should get a plot that looks like this:
	

	
	

	
Reset your plotting window back to a single figure at a time to avoid future confusion:
par(mfrow = c(1, 1))

	
	

80	

Residuals vs Fitted
Used to check linearity and homogeneity of variances. The red line should be (relatively)
straight and horizontal for the data to be linear. The cloud of data should be (relatively)
amorphous (cloud like), and should not have a 'wedge' or 'arrowhead' shape. Assessment:
Our red line seems straight and horizontal. The cloud of data is perhaps a little 'pointy' to the
right, but it isn't forming a clear arrowhead shape. This suggests the model is relatively linear
and the variances of the model are relatively equal across the range of the predictor.

Normal Q-Q Plot
Used to check normality of residuals. The horizontal axis plots the values that the
residuals should show if the residuals were perfectly normal. The vertical axis shows the
actual residuals. It follows then that if the data is departing from normality, the dots (real
vs theoretical residuals) would wander off the red line, which represents a perfect 1:1
relationship. Assessment: Our data seems to have some normality problems at the lower end
of its range. Biological data is often non-normal, and we might decide to accept the departure
from normality here (it's probably a bit borderline and depends on how conservative you want
to be). If we were concerned about the normality we would use a non-parametric correlation
test (e.g. Kendall tau) instead.

Scale-Location
Used to check linearity and homogeneity of variances. You read this plot in the same way
as the Residuals vs Fitted plot. The Residuals vs Fitted plot is consider a (slightly) better
diagnosis plot for linearity, whereas the Scale-Location is considered a (slightly) better
diagnosis plot for equal variances. Assessment: Very similar to our interpretation for the
Residuals vs Fitted, above. The two plots appear to be in agreement.

Residuals vs Leverage
This is not strictly speaking an assumption test at all, rather it is checking whether there
are any data points that would have a significant effect on the model if removed. This
can be thought of as a test for statistical outliers. If a data point is on the other side of
the 0.5 or 1.0 Cook's Distance (from the rest of the data), then it is having a substantial
independent affect on the model as a whole. Assessment: All our data points are sitting in
a cloud to the left of the Cook's distance lines. All is okay then.

What to do with Outliers?
My standard advice is that unless you have a strong reason to believe that an outlier was
due to human error or machine error, you should leave it in the data. The reason for this
is that removing outliers can lead to a temptation to start 'adjusting' the data so that it
fits expectations (i.e. the hypothesis), which is far from ideal.

	
	

81	

Scatterplot in Library 'car'
The scatterplot function in library car also provides a clear visual assessment of linearity
and whether variance (uncertainty) around a line of best fit might be increasing.

install.packages("car")
Download library from the internet.
Only needed if you haven't already installed the package

library(car)
scatterplot(MASS.DAY12 ~ Hb.g.dL, data = nestlings)

The plot fits a straight line (green, solid), and loess smoothed lines (red) with 50%
confidence intervals above and below the line (dashed red). If the confidence intervals
form a 'funnel' then there is probably a problem with variance changing across the range
of the predictor. You can modify the plot using standard graphic parameters as well as
some parameters built into the function. The boxplots are plotted automatically, but can
be switched off by setting to false. Use the following code to bring up a help menu and
check the options.

?(scatterplot)	

	
	

82	

Overall Assessment
Given the way the data points are wandering off the Q-Q line, it might be preferable to
either transform the data to achieve normality of residuals, or use non-parametric tests.
Nonetheless, it is a bit of a borderline call here. Although the QQ plot is not ideal,
regression analyses are (somewhat) robust to (small) departures from normality.

For simplicity, we're going to leave the data as is, and proceed with the analysis. Run the
following code.

nestlings.lm <- lm(MASS.DAY12 ~ Hb.g.dL, data = nestlings)
summary(nestlings.lm)	
	
You could also 'pipe' the code using the tidyverse syntax if you like:

library(tidyverse)
	
lm(MASS.DAY12 ~ Hb.g.dL, data = nestlings) %>%
summary()	
	
Or you can pile everything into a single line of code, but keep in mind you are risking
annoying errors if you use this approach:

summary(lm(MASS.DAY12 ~ Hb.g.dL, data = nestlings))	
	

	
	
	
	 	

RESULT

 Call:
lm(formula = MASS.DAY12 ~ Hb.g.dL, data = nestlings)

Residuals:
 Min 1Q Median 3Q Max
-14.7546 -0.5427 0.2014 0.9954 4.7767

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 14.35776 0.48662 29.505 < 2e-16 ***
Hb.g.dL 0.15670 0.03581 4.376 1.4e-05 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.789 on 673 degrees of freedom
Multiple R-squared: 0.02767, Adjusted R-squared: 0.02623
F-statistic: 19.15 on 1 and 673 DF, p-value: 1.398e-05	

	
	

83	

Call:
lm(formula = MASS.DAY12 ~ Hb.g.dL, data = nestlings)

This is simply a reminder what linear model we have just run.

Residuals:
 Min 1Q Median 3Q Max
-14.7546 -0.5427 0.2014 0.9954 4.7767

These are the ranges, upper and lower quartiles and median of the model. These are the same
values used to make a boxplot. You typically wouldn't report these values in a Result section.

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 14.35776 0.48662 29.505 < 2e-16 ***
Hb.g.dL 0.15670 0.03581 4.376 1.4e-05 ***

These are the effect sizes Estimate) standard error of the effect sizes (Std Error), t-
value and P value Pr(>|t|). These are the values that you would report in a Results section
either in brackets or in a table. Remember that any value of P that is very small (as is the case
here) would be reported as P < 0.001. We would not report these as P = 0.0000000000000002
or P = 0.000014, which are the actual P values that have been returned.

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

These codes for symbols indicating different significance levels. For our purposes we are
going to stick with the standard 0.05 significance level.

Residual standard error: 1.789 on 673 degrees of freedom

The residual standard error (unexplained variance) for the whole model and the degrees of
freedom for the residual variance. You typically wouldn't report these values in a Results
section.

Multiple R-squared: 0.02767, Adjusted R-squared: 0.02623

The Multiple R2 and Adjusted R2 for the whole model. Typically, you would report the
Adjusted R2 (assuming you want to report an R2), as this takes into account departure from
parsimony effects caused by using multiple predictors.

F-statistic: 19.15 on 1 and 673 DF, p-value: 1.398e-05

F-value, degrees of freedom and P for the whole model. Again, this is typically not reported
in a Result section.
	
	

	

	
	

84	

Plotting the regression model
You can have a go at plotting the residuals of the model, if you like. These residual
plots are typically not reproduced in scientific papers, but it can be useful to know how
to make one.

First, make sure that the model is constructed:
nestlings.lm <- lm(MASS.DAY12 ~ Hb.g.dL, data = nestlings)

par(mfrow = c(1, 1)) # reset to one graph per display

plot(MASS.DAY12~Hb.g.dL, pch = 16, data = nestlings)

abline(lm(MASS.DAY12~Hb.g.dL,
data = nestlings),col="red",lwd=3)
lwd = line width

segments(nestlings$Hb.g.dL, fitted(nestlings.lm),
nestlings$Hb.g.dL, nestlings$MASS.DAY12,col="blue",lty=3)
lty = line type. Try line types = 2, 4 or 5 if you like.
	

	
	

85	

Multiple Regression
Multiple Regression is just a term for a regression analysis that has two or more
continuous predictors. There is nothing about it that is much more complicated than a
simple regression, except that now you need to check for interaction terms. In principal
though, checking interaction terms is the same process as for ANOVAs, so we will deal
with that in the next section.

	
	

86	

ANOVA, ANCOVA & related models
An Analysis of Variance (ANOVA) is one of the most commonly used tests that you will
see in the biological sciences literature. It is a form of variance analysis and is related to
a t-test.

An ANOVA tests the null hypothesis that all means of response variables for groups are
the same.

In practice, this means that an ANOVA can be used to tell whether different treatment
levels are associating with different means of the response variable. As an example,
consider an experimental set-up where we are growing tomato plants under full light,
partial shade and heavy shade. This experiment has one response variable (height of the
tomato seedlings at week 10) and three levels (light, shade, heavy shade) of a single
factor (lighting treatment). Although the test is asking is there a difference in the mean
values of seedling height among the groups, the usefulness is that from this we can
determine whether a particular lighting treatment is associating with different levels of
seedling growth.

It is perhaps a little complicated, but in a sense, an ANOVA asks a question about
differences in order to address a question about trends.

An ANOVA compares residuals in a way that is similar to how a regression model works
except that residuals are taken from the mean of each group rather than across a range
of values. An F-ratio is derived from the variance of the residuals.

F	=	signal	/	noise	
F	=	variance	between	treatments	/	variance	within	treatments	
F	=	mean	squares	of	treatment	/	means	squares	of	the	error	
F	=	[sum	of	squares	of	treatment	/	[(T-1)]	/	[sum	of	squares	of	error	/	(n-1)]	

The F-ratio is conceptually very similar to the t-value. It is a measure of the signal to
noise in the data. It is equivalent to:

F	=	explained	variance	/	unexplained	variance	

This means that an F ratio is somewhat similar to an R2 value, except that instead of
dividing by total variance (i.e. and then getting percentage of total variance explained),
we obtain a ratio of the explained to unexplained variance.

	
	

87	

ASSUMPTIONS OF ANOVAs (and ANCOVAs etc)
(1) Residuals are normally distributed
(2) Residuals must be independent (collected randomly)
(3) Residuals have equal variances

OTHER PROBLEMS MAY OCCUR IF…
(1) Predictor variables correlate (r > 0.6 considered problematic)

(two variables explain the same thing)
(2) The model is over-parameterised

(too many predictors given your data set size)
(3) You fail to check for significance of interaction terms
 (your main effects could be meaningless)

ANOVAs are relatively robust to departures from the assumption of normality. However,
if variances are not equal and if variances of residuals are proportional to the predictor
variable(s), serious problems can develop. Independence of residuals must also be
maintained. If not, pseudoreplication can result, and your P-values will likely be far
stronger than they should be.

Terminology
ANOVAs have acquired a set of terminology that is confusing when first encountered and
is arguably out-dated. The distinction between a one-way and two-way ANOVA was more
important when ANOVAs were calculated using dedicated statistical calculators that
might take hours or days to programme, and a two-way ANOVA might be all that was
feasible. Now, it is sometimes preferable to refer to a test in the ANOVA family as a
general linear model.

Figure	6.14.	Wang	462	Statistical	Programmable	Calculator	from	about	1975.	
	 	

	
	

88	

Table	6.3.	Experimental	designs	and	appropriate	formulas	for	ANOVAs	in	R.	y	is	the	response	variable.	A,	B	
and	W	are	explanatory	factors	(discrete	variable).	x1	and	x2	etc	are	covariates.	
All	formula	use:	aov(formula , data = your.data).	
	

Design Formula
One-way ANOVA y ~ A

One-way ANCOVA with one
covariate

y ~ x * A

Two-way Factorial ANOVA

y ~ A * B

Three-way Factorial ANOVA y ~ A * B * C

Four-way Factorial ANOVA y ~ A * B * C * D

Two-way Factorial ANCOVA with
two covariates y ~ x1 * x2 * A * B

Nested ANOVA Y ~ A/B/C

Split-plot ANOVA Y ~ A * B * C + Error(A/B/C)

Randomised Block (where B is
blocking factor) y ~ B + A

One-way within-groups (repeated
measures) ANOVA

y ~ Error(Subject/A)

Repeated measures ANOVA with
one within-groups factor (W) and
one between-groups factor (B)

y ~ B * W + Error(Subject/W)

	

Some words of advice
Nested ANOVAs are mathematically complicated, and you should only be trying to
construct a nested model once you have a very clear idea what you are doing. Within-
group ANOVAs (also called a repeated measures ANOVA) work fine as long as the
experimental design is perfectly balanced. As soon as your data moved away from
balance (even a little bit), Within-group ANOVAs can develop substantial problems and
it becomes far more preferable to control for groups using a linear mixed effects model
with the group as a random effect in the model. All of the experimental designs that are
shown in blue (bottom half) may be better approached through use of mixed effects
models.	
	

	
	

89	

I still don't understand! Why are we 'testing assumptions'? None
of this makes sense… can't we just do an ANOVA?
Statistical tests, like ANOVAs or t-tests or chi squared tests, all carry assumptions about
the data. A t-test for example assumes the data consists of two sets of normally
distributed data. If you tried to feed non-normal data into a t-test, you might get a result,
but the result would be unreliable.

All we are doing is testing whether the data meets the test assumptions, and then (if it
doesn't) we try to transform the data so that it does meet assumptions, or look for another
more suitable test.

Assumptions are confusing. Non-parametric tests don't have
assumptions. Why not just use them from the start?
Most non-parametric tests work by ranking the data. This is a form of very drastic
transformation, and it discards a lot of information from a model. A transformation, like
a log transformation or a square root transformation, is an attempt at going half-way:
we're trying to 'correct' the data, and we know we will lose some information, but
hopefully most of the information in the distribution will remain. We're stuck between
needing the data to meet the assumptions of a test, but being reluctant to transform the
data really drastically because we know that could change the data to a point of losing
too much information.

Also, non-parametric tests inflate Type II error (the risk of accidentally accepting the null
when we shouldn't). Because scientists are obsessed with significance, they sometimes
do seem to avoid non-parametric tests for this reason.

Testing assumptions for ANOVAs and other linear models is
confusing. Can't you break it down a bit to make it simpler to
follow?
Alright. Have a look at the flow diagram on the next page.
	

	
	

90	

Testing assumptions in ANOVAs (and other ANOVA-like linear models) is quite involved.
Here is a flow chart to help you visualize the process.

	
	 	

	
	

91	

At a more fine-grained level, we also have to check the interaction terms and think about
whether or not we will require a post hoc test, such as a Tukey's test.

	

We will leave this here for now, and examine what is meant by 'interactions' and 'post
hoc' a little way down the track.

For now, we can return to checking assumptions for an ANOVA. The assumptions are the
same for ANOVAs, ANCOVAs and other ANOVA-like linear regression models. These all
(effectively) work the same way under the hood, which means that the assumption
testing is the same for all of these basic linear models. 	

	
	

92	

DIAGNOSTIC PLOTS
You can use the plot command to look at diagnostic plots. The current advice is that it is
better to use diagnostic plots to check assumptions in an ANOVA (or any regression-type
linear model) rather than using assumption tests like Shaprio-Wilks or Bartlett tests.

par(mfrow = c(2, 2))
plot(fullmodel.aov)

Residuals vs Fitted (homogeneity of variance in residuals)
The Residuals vs Fitted plot can be used to check homogeneity of residuals and linearity
of a model. If the residuals are equal (homogenous) there should be no pattern or shape
to the scatter of points. If there is a wedge (arrow-head or side-ways triangle) shape to
the data points (thin at one end, thick at the other) the residuals of the model are not
equal across the model. If it looks like a random cloud of scattered points you're ok. As
long as the red line is (relatively) horizontal and straight, the model is probably linear.

Normal QQ (normality of residuals)
The Normal QQ plot can be used to check the normality of residuals. If the residuals are
normal the observations (circles) should fall on the line of normality

Scale-Location
This also can be used to test for homogeneity of residuals and linearity of a model. It is
read in exactly the same way as the Residuals vs Fitted plot. If the plots disagree, the
Residuals vs Fitted is considered (slightly) better for linearity, whereas the Scale-
Location is considered (slightly) better for examining equal variances across the range
of a predictor.

Residuals vs Leverage
This is a more easily interpreted check for outliers. If observations are scattered so that
they are sitting beyond the 0.5 or 1 Cook's distance lines you have a potential problem
with outliers.

Checking tests visually: Most statisticians now seem to recommend you should check the
assumptions visually rather than rely on significance tests. Significance tests for assumptions
can provide a nice yes/no answer, but assumption testing is a bit more nuanced than this, and
sometimes you need to make a judgment call whether the data looks basically ok.

The following pages have some examples of diagnostic plots that have some problems
in them.

	
	

93	

 Untransformed Transformed

These plots have a couple of problems. For the untransformed data, you can see (on the
left) that the residuals vs fitted plot has a clear 'wedge' shape (I've drawn a line around
it in orange unless it is not clear) and the QQ plot is showing a fairly drastic tendency
away from the line of normality (indicated in orage). The residuals vs leverage plot
appears to be fine.

I've transformed the data and made it, if anything, worse (i.e. transformations don't
always improve data). There is still a wedge shape in the Residuals vs Fitted and now the
Scale-Location is developing a wedge as well. The QQ plot is maybe a little better, but a
lot of points are still clearly departing from the line of normality. And now we have a
clear outlier too (Residuals vs Leverage). Point 131 is on the other side of the 0.5 Cook's
D line, which indicates it is having too heavy an effect on the model as a whole.

Let's try a more aggressive transformation and see if we can improve the fit of the data.

	
	

94	

These look better. I achieved this by applying a rank normal transformation to the data
and using the rank normal transformed data as a response variable. The rank normal
transformation is a very drastic transformation that forces the data into a normal
distribution. It won't work if you have too many ties or if there are a lot of zeroes in the
data, but otherwise will tend to work with most data. In essence, using a rank normal
transformation is like forcing your ANOVA to perform like a non-parametric test. It is far
from ideal, but you might be stuck having to take an approach like this.

I've given the code below for a rank normal transformation, but here it is as well in
case you want to try it straight off the bat:

install.packages("GenABEL")
library(GenABEL)

yourdata$RANK.NORMAL <- rntransform(yourdata$variable)

	
	

95	

One-Way ANOVA

Import the adult house swallows dataset (if you haven't already):
swallows <- read.table('swallows-adults.csv',
header=T,sep=',')

Check the data:
head(swallows)
str(swallows)

Run the following code on the adult swallows data:

swallows.aov <- aov(MASS~BROODPATCH,data=swallows)
summary(swallows.aov)

Check the P-values of your ANOVA result above with the P-values of the equal and
unequal variance t-tests we just did on the same data. Does the P-values match?

t.test(MASS~BROODPATCH,data=swallows, var.equal=TRUE)

RESULT

 Df Sum Sq Mean Sq F value Pr(>F)
BROODPATCH 1 13.15 13.147 21.68 9.13e-06 ***
Residuals 109 66.10 0.606

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1	
	

RESULT

 Two Sample t-test

data: MASS by BROODPATCH
t = -4.6563, df = 109, p-value = 9.134e-06
alternative hypothesis: true difference in means is not equal
to 0
95 percent confidence interval:
 -0.9822838 -0.3957253
sample estimates:
mean in group 1 mean in group 2
 13.70755 14.39655	
	

	
	

96	

One-Way ANCOVA with one covariate

Run the following code on the adult swallows data:

swallows.aov <- aov(MASS~WingL*BROODPATCH,data=swallows)
summary(swallows.aov)	
	
	

	
	

Two-Way ANOVA

Run the following code on the adult swallows data:

swallows.aov <- aov(MASS~MONTH*BROODPATCH,data=swallows)
summary(swallows.aov)	
	
	

	
	
	 	

RESULT

 Df Sum Sq Mean Sq F value Pr(>F)
WingL 1 4.38 4.375 7.621 0.00679 **
BROODPATCH 1 12.63 12.626 21.991 8.13e-06 ***
WingL:BROODPATCH 1 0.81 0.809 1.409 0.23793
Residuals 107 61.43 0.574	
	

RESULT

 Df Sum Sq Mean Sq F value Pr(>F)
MONTH 4 4.39 1.099 1.980 0.103
BROODPATCH 1 16.94 16.942 30.538 2.52e-07 ***
MONTH:BROODPATCH 3 1.32 0.440 0.793 0.501
Residuals 102 56.59 0.555 	
	

	
	

97	

Effect sizes for ANOVAS
It is generally a good idea to report an effect size as well as the results of any statistical
test. For ANOVAs the eta squared (η2) is an effect size that is frequently reported in
psychology and medical studies, but is perhaps underused in biological sciences. An is
equivalent to an R2 (i.e. it is a percentage of variance explained, but for each predictor).
The eta squared function in the lsr library provides both the standard η2	(which	you	
would	report)	and	the	partial	η2	(which	you	wouldn't	typically	report).	The	partial	η2	is	the	
variance	explained	as	if	none	of	the	other	predictors	were	in	the	model,	which	isn't	highly	
interpretable	 if	you	are	actually	 interested	in	hypothesis	testing	based	on	the	ANOVA	as	a	
whole.	

install.packages("lsr")
Download library from the internet.
Only needed if you haven't already installed the package

library(lsr)

swallows.aov <- aov(MASS~WingL*BROODPATCH,data=swallows)
etaSquared(swallows.aov)	
	
	

	
	
swallows.aov <- aov(MASS~MONTH*BROODPATCH,data=swallows)
etaSquared(swallows.aov)	
	
	

	

The η2 is interpreted in the same was an R2 is interpreted. A value of 0 = zero variance
explained, whereas 1 = 100% of variance explained.

RESULT

 eta.sq eta.sq.part
WingL 0.04864008 0.05903723
BROODPATCH 0.15933154 0.17048468
WingL:BROODPATCH 0.01020536 0.01299295	
	

RESULT

 eta.sq eta.sq.part
MONTH 0.1033432 0.12642313
BROODPATCH 0.2137978 0.23041207
MONTH:BROODPATCH 0.0166550 0.02279164	
	

	
	

98	

Changing the order of predictors
Now run these two sets of code and look at the P-values comparing them to the tests
you just did on the previous page. Have the P-values changed? Have any of the results
changed in terms of their significances?

swallows.aov <- aov(MASS~BROODPATCH*WingL,data=swallows)
summary(swallows.aov)	
	

	
	
swallows.aov <- aov(MASS~BROODPATCH*MONTH,data=swallows)
summary(swallows.aov)	
	

	

What you may have noticed is that the P-values are changing depending on the order of
the variables. This often causes students to have a mini-crisis of confidence when they
first notice this. So, what is going on here?

RESULT

 Df Sum Sq Mean Sq F value Pr(>F)
BROODPATCH 1 13.15 13.147 22.898 5.5e-06 ***
WingL 1 3.85 3.854 6.713 0.0109 *
BROODPATCH:WingL 1 0.81 0.809 1.409 0.2379
Residuals 107 61.43 0.574	

RESULT

 Df Sum Sq Mean Sq F value Pr(>F)
BROODPATCH 1 13.15 13.147 23.698 4.12e-06 ***
MONTH 4 8.19 2.047 3.690 0.00756 **
BROODPATCH:MONTH 3 1.32 0.440 0.793 0.50054
Residuals 102 56.59 0.555 	
	

	
	

99	

Predictor order is important
When you changed the order of the predictor variables, the P-values may change. You
might find when you do this that some variables will fall in and out of significance. What
is going on?

There are three ways to partition the variance in y among the explanatory effects on the
right side of the equation. The equation…

y ~ x1 + x2 + A * B

…is equivalent to…

y ~ x1 + x2 + A + B + A:B

If the design is balanced then all three types of variance partitioning (called the Type I,
II and III sums of squares) will generate the same result and the order of predictors won't
matter (a good reason to keep your designs balanced). But if the design is unbalanced
the different Types of sums of squares partition variation explained in different ways.

Type I (sequential)
Explanatory effects are adjusted for those that appear earlier in the formula. In the
example above, x1 is unadjusted, x2 is adjusted for x1, A is adjusted for x1 and x2, B is
adjusted for x1 and x2 and A, and the interaction term A:B is adjusted for all other
terms.

Type II (hierarchical)
Explanatory effects are adjusted for those at the same level. In Type II, x1, x2, A and B
are all adjusted for each other but not for the interaction term. The interaction term A:B
is adjusted for all the main effects (x1, x2, A and B). If there were two interaction terms,
perhaps x1:x2, then A:B and x1:x2 would also be adjusted for each other.

Type III (marginal)
Each explanatory effect is adjusted for every other effect in the model. This is the least
powerful of the sums of squares approaches, and is arguably the most conservative, but
it causes problems for post-hoc analyses like Tukey's tests which we will look at shortly.

R by default runs Type I sums of squares which are the best for post-hoc analyses. You
can run Type II and Type III sums of squares tests using the Anova function in package
car if you like, but it is often better to arrange the explanatory variables in an order that
makes experimental sense. If you want to look at this function type:

library(car)
?Anova

	
	

100	

In the example where we are looking at the effects of Month and Broodpatch on adult
house swallow Mass it makes sense to write the model out as Month, then Broodpatch.
This is because primarily we are interested in the effect of Broodpatch, but we have
(presumably) included Month here because we know that swallows will gain and lose
Mass over a breeding season and we want to control for this in the statistical model. In
essence, by placing Broodpatch after Month we are asking: does Broodpatch (sex of
swallows) associate with differences in Mass after we take into account the variation in
Mass already explained by Month.

When working with Type I sums of squares models in R it is important to know what
question you want to ask before writing out formulas. Some fundamental advice:

(1) Place a predictor that you wish to control for (especially if the
predictor is not a part of your hypothesis) early in the sequence.
If you want to control for the effect of a predictor on another predictor, the controlled
predictor must come first.

(2) Place predictor(s) that are key to your hypothesis late in the
sequence.
This is placing your predictors that relate to your key hypothesis in a position where all
the other variables have a go at explaining the variance first. This biases against finding
significance in your predictor of interest, which is the most rigorous approach to take.

The key thing here is that placing your variables of interest early in the sequence is
arguably a form of P-hacking because you are making a decision to favour them in terms
of obtaining a significant P-value.

Also, although it may seem that adding additional variables will always make it harder
to see significance in your variables of interest, this isn't necessarily true if you have been
intelligent about your covariates. Covariates that are early in the sequence can also act
to 'clear away' some of the confusion in the variance, leaving behind residuals that your
predictor of interest is better able to explain. This is fundamentally what happens with
the stress and city living example above, where including the covariate 'how long have
you lived where you live', resolves some of the variation and allows for the variable of
interest (city vs country living) to explain the remaining variation in a meaningful way.

	
	

101	

Changing the interaction terms
Now run these three sets of code and look at the P-values comparing them to each other:

swallows.aov <- aov(MASS~MONTH*BROODPATCH,data=swallows)
summary(swallows.aov)	
	

	
	
swallows.aov <-
aov(MASS~MONTH+BROODPATCH+MONTH:BROODPATCH,data=swallows)
summary(swallows.aov)

swallows.aov <- aov(MASS~MONTH+BROODPATCH,data=swallows)
summary(swallows.aov)	

Are there any changes in P-values (however small)? Did you notice that the interaction
term MONTH:BROODPATCH has disappeared from the last model? What was different
about the code in the third model?

RESULT

 Df Sum Sq Mean Sq F value Pr(>F)
MONTH 4 4.39 1.099 1.980 0.103
BROODPATCH 1 16.94 16.942 30.538 2.52e-07 ***
MONTH:BROODPATCH 3 1.32 0.440 0.793 0.501
Residuals 102 56.59 0.555 	
	

RESULT

 Df Sum Sq Mean Sq F value Pr(>F)
MONTH 4 4.39 1.099 1.980 0.103
BROODPATCH 1 16.94 16.942 30.538 2.52e-07 ***
MONTH:BROODPATCH 3 1.32 0.440 0.793 0.501
Residuals 102 56.59 0.555	
	

RESULT

 Df Sum Sq Mean Sq F value Pr(>F)
MONTH 4 4.39 1.099 1.992 0.101
BROODPATCH 1 16.94 16.942 30.720 2.23e-07 ***
Residuals 105 57.91 0.551	

	
	

102	

Interactions are important
An interaction term is an additional factor or covariate in a model that is included to look
for complex relationships between main effects (the ordinary non-interactive factors and
covariates like A and B and x1 and x2).

Because an interaction term changes the model, even in a Type I model, the P-values of
the other terms will be (usually only slightly) changed.

What does a significant interaction mean?
There is a complex relationship and you can't interpret the main effects. Consider the
following situation:

MASS ~ MONTH P < 0.005
 BROODPATCH P < 0.005
 MONTH:BROODPATCH P < 0.005

The significant interaction term means that you cannot interpret Month or
Broodpatch. The interaction term could mean any of the following:

• Females are heavier than males, but only in August.
• Males are heavier than females but only in April.
• Females are heavier than males, but only in April and August

… and so on and so on

How to interpret a significant interaction term
If the interactions are between factors, then splitting the factors and analysing the levels
separately is an acceptable approach. In the above example we might split up all the
data by Month and then analyse Broodpatch separately for each Month.

Also, you can apply a post-hoc Tukey's test to an ANOVA model with factorial interactions.
However, this generates a (very large) series of comparisons that may not be biologically
meaningful and the power of your analysis will be substantially reduced. Only take this
step if it makes some biological sense to compare all possible interactions.

	
	

103	

What does a non-significant interaction term mean?
When an interaction term is non-significant it is reducing the explanatory power of the
model. You should remove it, and re-run the model using + instead of * to separate the
factors or covariates. If A:B is non-significant change the formulas from…

y ~ A * B

to

y ~ A + B

…and re-run the model.

However, keep in mind that:

1) You would keep a non-significant interaction term if the interaction term itself is
testing the hypothesis of your study

2) For very large datasets removing non-significant interaction terms won't make much
different to the P value

3) Some people prefer to leave non-significant interaction terms in a model, because
removing them can look a bit like chasing after significance for main effects

4) Leaving a non-significant interaction term in a model is not a terrible statistical
crime. Not checking for interaction terms in the first place may render your main effects
meaningless without you even realising.

	
	

104	

Interactions in linear models
Interaction terms can be one of the most difficult concepts to understand in statistics. A
significant interaction happens when the effect of one predictor depends on the effect
of another predictor. This is best explained visually.

swallows.aov <- aov(MASS~MONTH.1*BROODPATCH,data=swallows)

library(interactions)
interact_plot(swallows.aov, pred = "MONTH.1", modx =
"BROODPATCH", interval = TRUE, int.width = 0.8)

I've used month as a numeric value (8 = August, 12 = December) to make it a bit easier
to read the figure, but what you can see is that male (broodpatch = 1) and female
(broodpatch = 2) have quite different profiles to their mass from August to December.
Males seem to be losing mass, while females seem to be gaining mass.

	 	

	
	

105	

The two sexes are no different in mass and there is no difference between

sites A and B

	

The two sexes are no different in mass but there is a difference between
sites A and B

	

The two sexes are different in mass, and there is a difference between sites

A and B, but males and females are responding differently

	

	
	

106	

Note how the following examples have similar statistical results but the

relationships are markedly different...

	
	
	

	
	
	

	
	
	

	 	

	
	

107	

Interaction Terms: Step-by-step

When you run any sort of linear model:

(1) Start by including all interaction terms
(2) Remove the interaction term that has the highest P value
(3) Run the model again… check interactions
(4) Remove another interaction term with a high P value
(5) Keep removing interaction terms until all you are left with are main effects

and significant interactions

Why do we remove non-significant interactions from the model?

• Non-significant interaction terms interfere with the over-all predictive power of
the model.

• By including them you are in effect telling the model to take into account an
interaction and consider it important when it may not be

• When you remove non-significant terms, you will find the other P-values will
change (slightly)

• But actually, it's usually no terrible problem leaving them in, and some
researchers prefer to leave interactions in a model to show that they remembered
to check them. Also, removing interaction terms can look like chasing significance
(as P values will tend to decrease), but if significance depends on removing an
interaction term, you need to seriously think about what that might mean in terms
of overall effect. Relevant effect sizes will be an important next step.

Do we ever retain non-significant interaction terms in a linear model?

• Non-significant interaction terms are usually retained if they were part of your
hypothesis.

o For example, if your hypothesis specifically states Male guppy preference
for larger females depends on the temperature of the water then the
interaction term FEMALE.SIZE:WATER.TEMPERATURE is part of your
experimental design and you would retain it in the model even if it is non-
significant.

• Sometimes non-significant interaction terms are retained when higher order
terms including the same variables are significant. So, if you find that the two-
way interaction term AGE:SEX is not significant but the three-way interaction
term AGE:SEX:HEALTH is significant then there is an argument for retaining the
non-significant lower order interactions.

• When sample size is large (n = thousands of samples) the retention or removal of
interaction terms makes less difference to the main effects and some researchers
chose to leave the non-significant terms in the model. This last point is largely
one of personal preference.

	
	

108	

Exploring Interaction Terms in Linear Models

Johnson-Neyman Procedure
The Johnson-Neyman Procedure is a method for identifying the range over which two
groups differ for a given response.

ASSUMPTIONS OF JOHNSON-NEYMAN
(1) Your model has already met the assumptions of a linear model
(2) There is a significant interaction term
(3) The response is continuous
(4) The interaction term is two-way or three-way (only 2 or 3 terms)
(5) The predictors need to be either numeric or sensibly coded as

numeric dummy variables (i.e. male = 0, female = 1).

In some ways, the Johnson-Neyman procedure is quite limited in scope (there are quite
a few limitations, but when it is applicable, it can be hugely useful for resolving and
unravelling exactly how two terms are interacting with respect to a response variable,

Let's use our swallows dataset again.

swallows.aov <- aov(TailL~MONTH.1*BROODPATCH,data=swallows)
summary(swallows.aov)

So we have a significant interaction of MONTH:BROODPATCH for Tail Length (P =
0.0444). This suggests that the length of the tail is responding to month differently for
the sexes. We'll make use of the visual and statistical tools in the interactions package.
Let's start with an interaction plot.

RESULT
 Df Sum Sq Mean Sq F value Pr(>F)
MONTH.1 1 0 0.0 0.000 0.98321
BROODPATCH 1 334 334.5 9.216 0.00301 **
MONTH.1:BROODPATCH 1 150 150.1 4.137 0.04444 *
Residuals 107 3884 36.3 	

	
	

109	

library(interactions)
interact_plot(swallows.aov, pred = "MONTH.1", modx =
"BROODPATCH", interval = TRUE, int.width = 0.8)

That certainly looks like an interaction. It appears that females (Broodpatch = 2) have
declining tail length from August to December, whereas males (Broodpatch = 1) have an
increasing tail length. We can use the Johnson-Neyman Procedure to work out exactly
for which months the difference is significant.

However, the Johnson-Neyman procedure won't work with an aov object. We need to
create an lm object instead.

swallows.lm <- lm(TailL~MONTH.1*BROODPATCH,data=swallows)
summary(swallows.lm)

Note also, that if you have difficulty getting this procedure to work, you may need to use
as.numeric to ensure that the predictors are numbers. You'd need to do this before
building the model.

swallows$MONTH.1 <- as.numeric(swallows$MONTH.1)
swallows$BROODPATCH <- as.numeric(swallows$BROODPATCH)
	 	

	
	

110	

The	Johnson-Neyman	functions	are	also	in	the	interactions	library,	so	you'll	want	to	be	sure	
it	is	loaded.	
	
library(interactions)

sim_slopes(swallows.lm, pred = "BROODPATCH", modx = "MONTH.1",
johnson_neyman = TRUE)
	
In	this	example,	we	are	asking	over	what	range	of	months	is	the	slope	of	broodpatch	(sex)	
different.	Note	that	the	predictor	and	moderator	have	been	swapped	here.	You	can	try	it	
the	other	way	around,	and	see	what	result	you	obtain.		
	

	
	
The	interpretation	would	be	that	the	two	sexes	have	different	slopes	for	the	response	of	tail	
length	to	month	before	-64.92	(meaningless,	there	is	no	'month'	before	zero),	and	after	9.66	
(i.e.	about	half-way	through	September,	the	ninth	month).	We	can	also	visualise	this	
graphically:	
	
	 	

RESULT
JOHNSON-NEYMAN INTERVAL

When MONTH.1 is OUTSIDE the interval [-64.92, 9.66], the slope
of BROODPATCH is p < .05.

Note: The range of observed values of MONTH.1 is [8.00, 12.00]

SIMPLE SLOPES ANALYSIS

Slope of BROODPATCH when MONTH.1 = 11.39 (+ 1 SD):
 Est. S.E. t val. p
 -5.99 1.66 -3.60 0.00

Slope of BROODPATCH when MONTH.1 = 10.09 (Mean):
 Est. S.E. t val. p
 -3.45 1.21 -2.85 0.01

Slope of BROODPATCH when MONTH.1 = 8.79 (- 1 SD):

	
	

111	

johnson_neyman(swallows.lm, pred = "BROODPATCH", modx =
"MONTH.1", alpha = 0.05)
	

	

The thick black line shows you the actual range of the data. The red indicates the
increments (here, months) over which the difference is not significant. The blue indicates
the region in which there is significance. As with the result we had above, male and
female adult swallows appear to have significantly different slopes of the relationship
between month and tail length after mid-September, through to December.

Controlling for False Discovery Rate
The Johnson-Neyman Procedure in the interactions package allows you to control for
false discovery rate. Try this and see whether the results differ to that above.

sim_slopes(swallows.lm, pred = "BROODPATCH", modx = "MONTH.1",
johnson_neyman = TRUE", control.fdr = TRUE)

Note that the result is now for the range inside two numbers, rather than outside a set
of two numbers.

	
	

112	

The interactions package does have some options for including a second moderator,
although you will also need the library cowplot installed to make use of this. You can
try this using the agilis_morphometrics.csv dataset.

agilis <- read.table('agilis-morphometrics.csv',
header=T,sep=',')

install.packages("cowplot")
library(cowplot)

agilis.lm <- lm(MASS~SEX * FRAGMENTATION * MONTH , data=
agilis)
summary(agilis.lm)

sim_slopes(agilis.lm, pred = "SEX", modx = "MONTH", mod2 =
"FRAGMENTATION",jnplot = TRUE, control.fdr = TRUE)

RESULT
JOHNSON-NEYMAN INTERVAL

When MONTH.1 is INSIDE the interval [9.78, 29.25], the slope
of BROODPATCH is p < .05.

Note: The range of observed values of MONTH.1 is [8.00, 12.00]

Interval calculated using false discovery rate adjusted t =
2.23

SIMPLE SLOPES ANALYSIS

Slope of BROODPATCH when MONTH.1 = 11.39 (+ 1 SD):
 Est. S.E. t val. p
 -5.99 1.66 -3.60 0.00

Slope of BROODPATCH when MONTH.1 = 10.09 (Mean):
 Est. S.E. t val. p
 -3.45 1.21 -2.85 0.01

Slope of BROODPATCH when MONTH.1 = 8.79 (- 1 SD):
 Est. S.E. t val. p
 -0.92 1.81 -0.51 0.61
Slope of BROODPATCH when MONTH.1 = 8.79 (- 1 SD):
 Est. S.E. t val. p
 -0.92 1.81 -0.51 0.61	

	
	

113	

In effect, the model has been split into fragmented (1)and continuous (0) populations,
and then a difference for slope of mass by sex has been checked for each of the two
populations seperately. The plot generated is on the next page, and you can see that the
fragmented and continuous populations are graphed separately too.

RESULT
██████████ While FRAGMENTATION (2nd moderator) = 0.00 (0) ██████████

JOHNSON-NEYMAN INTERVAL

When MONTH is INSIDE the interval [0.66, 14.68], the slope of SEX is p <
.05.

Note: The range of observed values of MONTH is [3.00, 8.00]

Interval calculated using false discovery rate adjusted t = 1.97

SIMPLE SLOPES ANALYSIS

Slope of SEX when MONTH = 4.32 (- 1 SD):
 Est. S.E. t val. p
 -5.87 0.94 -6.24 0.00

Slope of SEX when MONTH = 5.70 (Mean):
 Est. S.E. t val. p
 -6.22 0.66 -9.36 0.00

Slope of SEX when MONTH = 7.09 (+ 1 SD):
 Est. S.E. t val. p
 -6.57 0.93 -7.07 0.00

██████████ While FRAGMENTATION (2nd moderator) = 1.00 (1) ██████████

JOHNSON-NEYMAN INTERVAL

When MONTH is OUTSIDE the interval [-10.11, 2.34], the slope of SEX is p
< .05.

Note: The range of observed values of MONTH is [3.00, 8.00]

Interval calculated using false discovery rate adjusted t = 1.97

SIMPLE SLOPES ANALYSIS

Slope of SEX when MONTH = 4.32 (- 1 SD):
 Est. S.E. t val. p
 -6.66 0.97 -6.87 0.00

Slope of SEX when MONTH = 5.70 (Mean):
 Est. S.E. t val. p
 -8.80 0.68 -12.93 0.00

Slope of SEX when MONTH = 7.09 (+ 1 SD):
 Est. S.E. t val. p
 -10.95 0.98 -11.19 0.00	

	
	

114	

There is a small region of non-significant difference in slopes (red) for fragmented
populations, but if you look at the thick black line, you can see that this is outside our
actual sampled range (March-August). We wouldn't want to infer anything about months
outside of the sampling range anyway, so that's fine. Plotting the data rather than the
slopes would be helpful for interpretation:

interact_plot(agilis.lm, pred = "MONTH", modx = "SEX", , mod2
= "FRAGMENTATION", interval = TRUE, int.width = 0.8)

Fragmentation (0 = continuous forest, 1 = fragmented) Sex (0 = male, 1 = female)

	
	

115	

The interactions package also allows you to examine a significant interaction between
two categorical predictors (factors) using a categorical interaction plot.

We will use the agilis_morphometrics.csv dataset again. Note that I am using 'aov' instead
of 'lm' because 'aov' is considered preferable when your predictors of interest are
categorical.

agilis <- read.table('agilis-morphometrics.csv',
header=T,sep=',')

agilis.aov <- aov(MASS~MF * HABITAT, data= agilis)
summary(agilis.aov)

library(interactions)
cat_plot(agilis.aov, pred = "MF", modx = "HABITAT", data =
agilis)

Our interpretation would be that there is no difference in mass for female agile
antechinus in the two environments (fragmented and continuous), but male agile
antechinus are heavier in the fragmented habitat. We can draw this as a statistically valid
conclusion because the bars indicate 95% confidence intervals (i.e. not standard errors),
so if bars do not overlap, then the means are different at P < 0.05. However, do note that
no 'pairwise' correction has been applied, and it might be sensible to try applying a
Tukey's test to the interaction term as well. Which brings us to the next topic.

	
	

116	

Post-hoc multiple comparisons

A post-hoc test is applied after the
initial hypothesis test has been
conducted. If the initial hypothesis
test shows a significant effect of a
factor, then post-hoc tests can help
disentangle exactly what the effect
may be. One important feature of
post-hoc tests is that they adjust the
P-value to take into account the
number of comparisons being made.
Because each comparison (using
classically statistical methods) runs a
0.05% chance of returning a false
positive, testing differences in groups
by applying endless sequences of t-
tests (for example) runs an
increasingly high risk of returning a
false significant result. The XKCD
comic illustrates this quite clearly.

	
	

117	

Tukey's Test
If you only have two levels in a factor (i.e. as when you are doing a t-test) there is no
good reason to apply a post-hoc test. If there is a significant difference with just two
levels you simply need to graph the data and check which of the two means is higher
than the other. You already know the difference is significant because that was what your
initial hypothesis test informed you.

Where there are three or more levels of a significant factor, then you need to undertake
a post-hoc test to determine which groups have different sample means and which have
the same sample means.

ASSUMPTIONS	OF	TUKEY	TEST	
(1)	Equal	variances		
(2)	Observations	must	be	independent	(collected	randomly)	
(3)	You	are	testing	the	effect(s)	of	a	factor	on	a	response	variable	
(4)	The	factor	has	already	been	shown	to	be	significant	
(5)	The	factor	has	3	or	more	levels	

	
	
Import the agilis morphometrics dataset (if you haven't already):
agilis <- read.table('agilis-morphometrics.csv',
header=T,sep=',')

Check the data:
head(agilis)
str(agilis)

Run the following:
1) Turn month into a factor (it is currently a number)
agilis$MONTH <- as.factor(agilis$MONTH)

2) Create an ANOVA model
agilis.aov <- aov(RBC~MONTH,data=agilis)

3) Check the diagnostic plots. Do they look okay?
par(mfrow = c(2,2)) # set plotting window to 2x2 array
plot(agilis.aov)

4) Look at the results of the ANOVA.
summary(agilis.aov)
etaSquared(agilis.aov) # in library 'lsr'

	
	

118	

This result has informed us that there is some sort of difference by month for agile
antechinus red blood cell counts, but we don't know which months are different to which
other months. Because seasonal effects are often (although not always) non-linear
because of the cyclical nature of the year, it is often better to view months as factors
rather than numbers (at least at the more basic level of ANOVAs… more sophisticated
tests for cyclical data do exist but we're not looking at them at this point). Let's have a
look at the boxplots and a post-hoc comparison.

RESULT

> summary(agilis.aov)
 Df Sum Sq Mean Sq F value Pr(>F)
MONTH 5 8.002e+25 1.600e+25 5.306 0.000132 ***
Residuals 203 6.122e+26 3.016e+24

> etaSquared(agilis.aov)
 eta.sq eta.sq.part
MONTH 0.1155909 0.1155909
	

	
	

119	

par(mfrow = c(1,1)) # set plotting window to 1x1 array
boxplot(RBC~MONTH,data=agilis,col=c("forestgreen"), ylab = "Agile
antechinus RBC", xlab = "Months: from March to August")

TukeyHSD(agilis.aov)

RESULT

 Tukey multiple comparisons of means
 95% family-wise confidence level

Fit: aov(formula = RBC ~ MONTH, data = agilis)

$MONTH
 diff lwr upr p adj
4-3 6.060440e+10 -1.595730e+12 1716938832527 0.9999982
5-3 2.741604e+11 -1.216218e+12 1764538487050 0.9949416
6-3 -5.497619e+11 -2.091725e+12 992201539901 0.9088421
7-3 -8.398571e+11 -2.350667e+12 670952313723 0.5999092
8-3 -1.736857e+12 -3.477979e+12 4264726072 0.0509691
5-4 2.135560e+11 -9.688964e+11 1396008418516 0.9953595
6-4 -6.103663e+11 -1.857210e+12 636476967489 0.7219131
7-4 -9.004615e+11 -2.108564e+12 307641140953 0.2688956
8-4 -1.797462e+12 -3.283554e+12 -311368596421 0.0079700
6-5 -8.239223e+11 -1.839994e+12 192149151876 0.1857561
7-5 -1.114018e+12 -2.082158e+12 -145877493844 0.0138576
8-5 -2.011018e+12 -3.309576e+12 -712458609957 0.0001986
7-6 -2.900952e+11 -1.335906e+12 755715252267 0.9675809
8-6 -1.187095e+12 -2.544549e+12 170358160783 0.1242693
8-7 -8.970000e+11 -2.218958e+12 424958274507 0.3736712	

	
	

120	

How do we interpret the output of the Tukey's test? The test is running all possible
'pairwise' comparisons for the mean of RBC by month, and adjusting to control for the
'familywise' error rate. The problem with running many tests is that the risk of a Type I
error (rejecting the null when we shouldn't due to a chance event) increases. The Tukey's
test penalises the P values by (in effect) multiplying P values by the number of
comparisons, topping out at P > 0.999. Let's look at one line and interpret it:

 diff lwr upr p adj
4-3 6.060440e+10 -1.595730e+12 1716938832527 0.9999982

4-3 The mean of April minus the mean of March

diff Is a difference of…
6.060440e+10 6x1010 cells per L

The 95% lower confidence limit for this difference is -1.595730e+12 RBC/L whereas
the 95% upper confidence limit is 1716938832527 RBC/L. Note that the confidence
interval crosses zero. This means that within a 95% level of confidence, the difference
between the two means could be zero.

The adjusted P value for this difference is 0.9999982, which suggests the difference is
not significant (i.e. we have a 95% level of confidence that the difference in means may
be zero: a P value is a CI 'flipped around' the other way).

How to report a Tukey's Test
Typically, Tukey's contrasts are reported in a table. The Difference and the Adjusted P-
value should always be reported. The confidence intervals should also be reported for
preference, but space allowances in journals sometimes restrict this. You can also use
equal signs like this (March = April = May = June: P > 0.05 for all contrasts), or does not
equal signs like this (August ≠ April: P < 0.05), but you have to be very careful as you
write out the equals and not-equals, as this can be confusing, and easy to mix up. Tukey's
tests are also reported using alphabet soup on graphs, and we'll look at an example of
this now.

Incidentally, you can plot a Tukey's test, but the plot only gives you the confidence
intervals, which are usually not reported in graphical form for a Tukey's test…

agilis.tukey <- TukeyHSD(agilis.aov)
plot(agilis.tukey)

	
	

121	

The following boxplot is a visual representation of a two-way ANOVA involving sex (MF)
and fragmentation of habitat (HABITAT).

boxplot(MASS~HABITAT*MF,data=agilis,col=c("forestgreen","ivory"))

	
boxplot(MASS~HABITAT*MF,data=agilis	
	
Run the following:
1) Make sure your factors are definitely factors:
agilis$HABITAT <- as.factor(agilis$HABITAT)
agilis$MF <- as.factor(agilis$MF)

2) Create an ANOVA model
agilis.aov <- aov(MASS~HABITAT*MF,data=agilis)

3) Check the diagnostic plots. Do they look okay?
par(mfrow = c(2,2)) # set plotting window to 2x2 array
plot(agilis.aov)

4) Look at the results of the ANOVA. Check the interactions. Is the interaction term
HABITAT:MF significant?
summary(agilis.aov)
etaSquared(agilis.aov) # in library 'lsr'
	
	

	
	

122	

	

	

RESULT

> summary(agilis.aov)
 Df Sum Sq Mean Sq F value Pr(>F)
HABITAT 1 63.6 63.6 4.935 0.0274 *
MF 1 2937.3 2937.3 227.863 <2e-16 ***
HABITAT:MF 1 86.6 86.6 6.722 0.0102 *
Residuals 206 2655.5 12.9

> etaSquared(agilis.aov) # in library 'lsr'
 eta.sq eta.sq.part
HABITAT 0.01545856 0.03235094
MF 0.51145392 0.52519565
HABITAT:MF 0.01508764 0.03159923	

	
	

123	

Because the interaction term was significant, we shouldn't remove it from the model. As
long as both terms are factors (remembering that Tukey's tests won't work for covariate
predictors as there are no levels to contrast), we will get all contrasts including for the
interaction levels:

TukeyHSD(agilis.aov)

So all contrasts are significant, except for female fragmented and female continuous
forest populations. Using equal signs this would look like so: (FF = CF (P > 0.05) & CM ≠
FM ≠ FF (P < 0.05) & CM ≠ FM ≠ CF (P < 0.05)). If we were to allocate 'alphabet soup' to
these contrasts we would need to add a letter to be shared by FF and CF (because they
are not different), and add letters to distinguish all other groups. Something like this
would do: FFa, CFa,, FMb, CMc. Using this notation method any groups that share a letter
are not significantly different.

RESULT

 Tukey multiple comparisons of means
 95% family-wise confidence level

Fit: aov(formula = MASS ~ HABITAT * MF, data = agilis)

$HABITAT
 diff lwr upr p adj
FRAG-CONT 1.101247 0.1239175 2.078576 0.027404

$MF
 diff lwr upr p adj
M-F 7.493854 6.514746 8.472963 0

$`HABITAT:MF`
 diff lwr upr p adj
FRAG:F-CONT:F -0.07108844 -1.9498588 1.807682 0.9996619
CONT:M-CONT:F 6.24304931 4.4456499 8.040449 0.0000000
FRAG:M-CONT:F 8.74881273 6.9058317 10.591794 0.0000000
CONT:M-FRAG:F 6.31413775 4.5167384 8.111537 0.0000000
FRAG:M-FRAG:F 8.81990117 6.9769201 10.662882 0.0000000
FRAG:M-CONT:M 2.50576342 0.7458074 4.265719 0.0016372	

	
	

124	

Alphabet Soup on a Boxplot
Let's use the boxplot we created above.

boxplot(MASS~HABITAT*MF,data=agilis,ylim=c(10,45),
col=c("forestgreen","ivory"))

text(c(1, 2, 3, 4), c(25, 25, 35, 42), labels=c('a', 'a', 'b', 'c'))

Use cex to increase font size and change the colour to dark red.

boxplot(MASS~HABITAT*MF,data=agilis,ylim=c(10,45),
col=c("forestgreen","ivory"))

text(c(1, 2, 3, 4), c(25, 25, 35, 42), labels=c('a', 'a', 'b', 'c'),
cex=1.5, col="darkred")

	
	

125	

Because an ANOVA is a comparison of means (not medians), arguably, it is more suitable
to present a bar graph with standard errors as confidence intervals. Some reviewers will
insist on this. Others will be happy with boxplots. The library 'sciplot' allows you to plot
a bar graph relatively easily if you need to.

library(sciplot)

attach(agilis)
bargraph.CI(
 MF, # categorical factor for the x-axis
 MASS, # numerical DV for the y-axis
 HABITAT, # grouping factor
 legend=T, # Use legend=F if you don't want a legend
 ylab="Agilis Mass (g)",
 xlab="Study sites & sexes",
 col=c("forestgreen","ivory"),
 ylim=c(0,35)) # set y axis to 0 to 35
	

	
	 	

	
	

126	

Can we add alphabet soup to this graph? We can, as follows:
	
attach(agilis)
bargraph.CI(MF, MASS, HABITAT, legend=T, ylab="Agilis Mass
(g)", xlab="Study sites & sexes",
col=c("forestgreen","ivory"), ylim=c(0,35))

text(c(1.5, 2.5,4.5,5.5), c(20, 20, 27, 30),
labels=c('a', 'a', 'b', 'c'), cex=1.5, col="darkred")

	
	

127	

Using 'glht' to apply Tukey's contrasts
The TukeyHSD command used above will only work on aov models. The test won't work
on other types of linear models such as linear mixed effects (lme or lme4) or generalised
linear mixed effects models (glm). Instead you can use the 'glht' function in library
'multcomp '. This same function also works on aov models, and we will use our dataset
from above and an aov model above as an example:

install.packages("multcomp") # if not already installed
library(multcomp)
	
Make sure your 'factor' of interest is actually a factor in R!
your.data$your.factor <- as.factor(your.data$your.factor)
	
Make sure your dataset is attached!
attach(your.data)

agilis <- read.table('agilis-morphometrics.csv',
header=T,sep=',')

Check the data:
head(agilis)
str(agilis)

1) Turn month into a factor (it is currently a number)
agilis$MONTH <- as.factor(agilis$MONTH)

2) Attach your dataset
attach(agilis)

3) Create an ANOVA model
agilis.aov <- aov(RBC~MONTH,data=agilis)

Apply a Tukey test to the model (example code):
fit.glht <- glht(your.model,linfct=mcp(YOUR.FACTOR="Tukey"))
	
The actual code for our agilis example:
agilis.glht <- glht(agilis.aov,linfct=mcp(MONTH="Tukey"))
	
	 	

	
	

128	

plot(agilis.glht)
This is a plot of the confidence intervals of the contrasts. This plot is typically not
included in scientific reports, but can be useful for you to look at.

summary(agilis.glht)

The results should broadly agree with the TukeyHSD example we used earlier
(although may not be identical).

RESULT
 Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

Fit: aov(formula = RBC ~ MONTH, data = agilis)

Linear Hypotheses:
 Estimate Std. Error t value Pr(>|t|)
4 - 3 == 0 6.060e+10 5.757e+11 0.105 1.00000
5 - 3 == 0 2.742e+11 5.180e+11 0.529 0.99467
6 - 3 == 0 -5.498e+11 5.359e+11 -1.026 0.90504
7 - 3 == 0 -8.399e+11 5.251e+11 -1.599 0.58978
8 - 3 == 0 -1.737e+12 6.052e+11 -2.870 0.04861 *
5 - 4 == 0 2.136e+11 4.110e+11 0.520 0.99511
6 - 4 == 0 -6.104e+11 4.334e+11 -1.408 0.71329
7 - 4 == 0 -9.005e+11 4.199e+11 -2.144 0.26022
8 - 4 == 0 -1.797e+12 5.165e+11 -3.480 0.00754 **
6 - 5 == 0 -8.239e+11 3.532e+11 -2.333 0.17888
7 - 5 == 0 -1.114e+12 3.365e+11 -3.311 0.01306 *
8 - 5 == 0 -2.011e+12 4.513e+11 -4.456 < 0.001 ***
7 - 6 == 0 -2.901e+11 3.635e+11 -0.798 0.96604
8 - 6 == 0 -1.187e+12 4.718e+11 -2.516 0.11935
8 - 7 == 0 -8.970e+11 4.595e+11 -1.952 0.36360

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’
1
(Adjusted p values reported -- single-step method)	

	
	

129	

cld(agilis.glht)
This command automatically generates your alphabet soup letters for graphs and
figures.

We would interpret this to mean that RBC in March is not significantly different to April,
May or June. April is not significantly different to March, May and June. May is not
different to March, April and June. June is not significantly different to any month. July
is only significantly different to March. August is significantly different to March, April
and May, but is not different to June and July.

glht: factorial interaction terms
If the model has an interaction term in it that involves your factor of interest and
another factor, you may need to include an interaction average:

fit.glht <- glht(your.lme,linfct=mcp(YOUR.FACTOR="Tukey",	
interaction_average=TRUE))
	
summary(fit.glht)
	
	
glht: covariate interaction terms
If	the	model	has	an	interaction	term	that	involves	your	factor	of	interest	and	a	covariate	in	
it,	then	you	may	need	to	include	an	interaction	average:	
	
fit.glht <- glht(your.lme,linfct=mcp(YOUR.FACTOR="Tukey",	
covariate_average=TRUE))
	
summary(fit.glht)

RESULT
 > cld(agilis.glht)
 3 4 5 6 7 8
"bc" "bc" "c" "ac" "ab" "a"	

	
	

130	

Non-Parametric Equivalents of Variability Tests
Non-parametric tests do not assume that the data has any given distribution. These tests
mean that data that is not normally distributed can be tested without resorting to
transformations. Some researchers argue that we should always use non-parametric tests
in the biological sciences because we don't actually know if increments of measured
variables (such as mass) are isometric to outcomes of interest (such as survivorship and
fitness) (i.e. you can't know that having twice the mass = exactly twice the fitness).

General non-parametric test for two groups
This non-parametric equivalent of a t-test is better known as a Mann-Whitney U, but also
called a Wilcoxon rank sum test or Mann-Whitney-Wilcoxon test. Non-parametric tests
are suitable for data that is not normally distributed and data that is bounded, such as a
percentage that is bounded by zero and one. Ratios can also be tested using non-
parametric tests. In all cases, the non-parametric test avoids the need to transform the
data ahead of time.

A Mann-Whitney U tests whether the medians are different. If you use a Mann-Whitney
U test, you'll need to present data as box plots and medians with confidence intervals.

ASSUMPTIONS OF MANN-WHITNEY U
(1) The responses are ordinal (though not necessarily scaled)

(i.e. it is possible to say of two observations, which is larger)
(2) Observations must be independent (collected randomly)

We'll use the same datasets that we examined in the previous lab. This is so you can
compare the results of the parametric and non-parametric equivalents. If you like, you
can scroll back to the corresponding parametric test and check whether the P-values
agree.

	
	

131	

Import the data:
swallows <- read.table('swallows-adults.csv',header=T,sep=',')
head(swallows)
str(swallows)

Here's another way to check if BROODPATCH is a factor:
is.factor(swallows$BROODPATCH)

Change BROODPATCH to a factor:
swallows$BROODPATCH <- as.factor(swallows$BROODPATCH)
is.factor(swallows$BROODPATCH)

Apply the Mann-Whitney U test:
wilcox.test(MASS~BROODPATCH, data = swallows)
	

	

The implication is that there is a difference in the median mass (g) for sexes of swallows
(as estimated by 'broodpatch').

General non-parametric paired test for two groups
A Wilcoxon signed-rank test can be used to test differences in paired observations. This
is the non-parametric equivalent of a paired t-test

The Wilcoxon signed-rank test uses the same command as a Mann-Whitney U test in R.
The data has to be set up differently in the csv file, but otherwise the commands are very
similar to that given above.

ASSUMPTIONS OF WILCOXON SIGNED RANK
(1) The responses are on the same scale

(i.e. they are comparable, not enough just to be ordinal)
(2) Observations must be independent (collected randomly)
(3) Observations are paired (i.e. in blocks of two)

RESULT

 Wilcoxon rank sum test with continuity correction

data: MASS by BROODPATCH
W = 819, p-value = 1.85e-05
alternative hypothesis: true location shift is not equal to 0	

	
	

132	

Import the paired mean seedling height data:
msh.p <- read.table('msh-paired.csv',header=T,sep=',')
str(msh.p)

wilcox.test(msh.p$TREATMENT, msh.p$CONTROL, paired=TRUE)
	

	

The implication is that there is a difference in the median value of mean shrub heights
(msh) in the paired plots that were studied.

	

RESULT
 Wilcoxon signed rank test

data: msh.p$TREATMENT and msh.p$CONTROL
V = 71, p-value = 0.009277
alternative hypothesis: true location shift is not equal to 0	

	
	

133	

General non-parametric test: one factor with multiple levels
We are now going to look at the non-parametric equivalent of a one-way ANOVA. We'll
use the agilis data from the last lab because the RBC and Month model didn't perfectly
fit the requirements for an ANOVA and it will be interesting to see if a non-parametric
test gives a different answer to the test based on ANOVAs.

The Kruskal-Wallis test is a non-parametric equivalent of a one-way ANOVA.

ASSUMPTIONS OF KRUSKAL-WALLIS TEST
(1) Observations must be independent (collected randomly)
(2) One predictor factor (but can have many levels)

Import the dataset:
agilis <- read.table('agilis-morphometrics.csv',
header=T,sep=',')

Check the data:
head(agilis)
str(agilis)

Turn month into a factor (it is currently a number)
agilis$MONTH <- as.factor(agilis$MONTH)

Apply a Kruskal-Wallis test:
kruskal.test(RBC~MONTH,data=agilis)

Note that we cannot add terms like HABITAT+MONTH or	HABITAT*MONTH because a
Kruskal-Wallis Test only allows for one predictor variable (i.e. it is a 'one-way' test).	
	

	

This suggests there is a significant difference in the RBC values by month for the agile
antechinus studied. However, much like an ANOVA, we need to use a post-hoc test to
identify which months are different to which other months. Technically, the Kruskal-
Wallis test is testing for a difference in the overall distribution of values among groups,
and we can't really say that significance indicates a difference in median or means.
However, from a practical point of view, boxplots are usually presented with Kruskal-
Wallis tests and we take significance to indicate a difference in the group 'central
tendencies'.

RESULT
 Kruskal-Wallis rank sum test

data: RBC by MONTH
Kruskal-Wallis chi-sqred = 29.89, df = 5, p-value = 1.55e-05	

	
	

134	

If you wanted to check this against a visual test for differences in medians, boxplots can
be set to have a 'notch'. This notch represents a (roughly) 95% CI for the median (actually
the notch = +/-1.58 IQR/sqrt(n)). If two notches overlap, you can take this to
suggest the medians are not different. If they do not overlap, then this can be taken to
be 'strong evidence' that the medians are different.

Reorder Month so that it will appear in the right order on the boxplot (i.e. not
alphabetically).

agilis$Month<-factor(agilis$Month, c("Mar", "Apr", "May",
"Jun", "Jul", "Aug"))

boxplot(RBC~Month, las = 2, data=agilis, notch=T,
col="grey30")

So, we could take the plot as evidence that Mar, Apr and May have equivalent RBC
medians, but May is different to Jun, Jul and August. However, there is no adjustment for
multiple comparisons here. It is possible to adjust the size of notches, but working out
how to adjust for multiple comparisons is not straightforward (i.e. it wouldn't simply be
a matter of applying a multiplier, and these notches are extremely rough anyway)
	

	
	

135	

General non-parametric pairwise comparison
If you obtain a significant result for a Kruskal-Wallis test, and you have three or more
levels in a given predictor factor, then you will need to perform a non-parametric
equivilent of a Tukey's test. One good option is the Dunn's Test, a non-parametric
pairwise comparison. The assumptions are the same as for a Kruskal-Wallis test.

For a Dunn's test:

install.package("dunn.test")
library(dunn.test)

attach(your.data)
dunn.test(RESPONSE, PREDICTOR.GROUP)

There are a number of different corrections you can apply. Bonferroni is the most
standard, although Holm's correction is pretty widely used, and some people seem to
prefer it...

attach(your.data)
dunn.test(RESPONSE, PREDICTOR.GROUP, method="bonferroni")
dunn.test(RESPONSE, PREDICTOR.GROUP, method="sidak")
dunn.test(RESPONSE, PREDICTOR.GROUP, method="holm")
dunn.test(RESPONSE, PREDICTOR.GROUP, method="hs")
dunn.test(RESPONSE, PREDICTOR.GROUP, method="hochberg")
dunn.test(RESPONSE, PREDICTOR.GROUP, method="bh")
dunn.test(RESPONSE, PREDICTOR.GROUP, method="by")

We will use a Bonferroni correction for multiple comparison error:

attach(agilis)
dunn.test(RBC, MONTH, method="bonferroni")

The result output is in the form of a table with P values and differences next to each
other. Each contrast has a difference between means (Col Mean - Row Mean) which is
the top number, and a P value, which is the bottom number. P values 'top out' at 1.0000,
although in a report you would probably write this as P > 0.999.

	
	

136	

	

The March RBC was significantly higher than the August RBC (P = 0.014). The RBC in April
was significantly higher than the RBC in August (P = 0.007). The RBC in May was
significantly higher than the RBC in July (P = 0.002) and August (P < 0.001). If you are
unsure which median value is higher, you can always just boxplot the data and check it
that way. If you see agreement between the Dunn's Test and the notched boxplots, that
would be quite strong evidence for a difference.

RESULT
 Kruskal-Wallis rank sum test

data: RBC and MONTH
Kruskal-Wallis chi-squared = 29.8904, df = 5, p-value = 0

 Comparison of RBC by MONTH
 (Bonferroni)
Col Mean-|
Row Mean | 3 4 5 6 7
---------+---
 4 | 0.314788
 | 1.0000
 |
 5 | -0.489010 -1.057298
 | 1.0000 1.0000
 |
 6 | 1.293663 1.181694 2.680513
 | 1.0000 1.0000 0.0551
 |
 7 | 1.874960 1.913177 3.678723 0.801222
 | 0.4560 0.4179 0.0018* 1.0000
 |
 8 | 3.114881 3.298577 4.737712 2.525763 1.959728
 | 0.0138* 0.0073* 0.0000* 0.0866 0.3752

alpha = 0.05
Reject Ho if p <= alpha/2	

	
	

137	

Appendices

	

Everything	after	this	page	is	intended	only	to	help	
you	complete	assignments	in	other	units	or	during	

an	honours	year.	
	
	

Nothing	after	this	page	is	assessable	for	BIO3011.	
	
	

	

	
	

138	

Generalised linear models
What if we want to examine count of binary response data in a more sophisticated way
than chi squared tests allow? The mynas dataset we used earlier has various predictor
variables, but because these are not all factors (i.e. cannot be used to generate a
contingency table), chi-squared tests are not going to be much help.

The variables we have are:

'data.frame': 160 obs. of 7 variables:
$ REGION : Factor w/ 4 levels "Peri-urban","Rural",..: 3 3 3 3 3 3 3 3 3
3 ...
$ FORAGE : num 0.656 0.25 0.656 0.533 0.723 ...
$ VIGIL : num 0.292 0.757 0.314 0.476 0.23 ...
$ PECK.rate: int 5 4 4 5 4 5 5 5 5 3 ...
$ HUMANS : Factor w/ 2 levels "NO","YES": 2 1 1 1 2 2 2 1 2 1 ...
$ CONSPECS : Factor w/ 2 levels "NO","YES": 2 2 2 2 2 2 2 2 2 2 ...
$ VEHICLES : Factor w/ 2 levels "NO","YES": 2 1 1 2 2 1 1 2 2 2 ...

REGION The type of landscape
FORAGE: Percentage of time spent foraging
VIGIL Percentage of time spent vigilant
PECK.rate The response variable
HUMANS Were humans (aside from the researcher) present? yes/no
CONSPECS Were conspecifics present? yes/no
VEHICLES Were vehicles present? yes/no

What we will do now is make use of generalised linear models (glm). A generalised linear
model is an advance over general linear models (lm) and ANOVAs (aov), in that a
generalised linear model can make use of some clever mathematics to model data using
different distributions. The most commonly used are Gaussian (normal, the same as a lm),
Poisson (when the response is count data) and Binomial (when the response is binary).

Generalised linear models use a "link" function to specify the distribution of residuals.
For the most common two types of distribution used are:

Log used for count data η = log µ

Logistic (logit) used for binary data 	 	 η = log (µ / (1 - µ))	
	
model.glm <- glm(y ~ x, family = binomial(link="logit"))

model.glm <- glm(y ~ x, family = poisson(link = "log"))
	
	 	

	
	

139	

A generalised linear model is a test of deviance not variance. Deviance is a measure of
fit, a bit like the other goodness of fit measures we've looked at today. It is a measure
of how well your data fits a model

ASSUMPTIONS	OF	GENERALISED	LINEAR	MODEL	
(1)	Observations	are	independent	(collected	randomly)	
(2)	Correct	link	function	is	used	
	 Residuals	must	fit	the	nominated	error	distribution	
	 Overdispersion	should	not	occur	

These are the only two assumptions. If the residuals do not fit 'over-dispersion' will occur.
Can check this by looking at the residual deviance:

• If the model does not fit, overdispersation occurs
• When this happens, the residual deviance will be larger than the degrees of

freedom
• If this occurs, you may have to switch to a negativebionomial, quasibinomial (for

binomial) or quasipoisson (for poisson) distribution and try again

PROBLEMS	CAN	OCCUR	IF…	
(1)	Predictor	variables	are	correlated	
(2)	Model	is	over-parameterised	
(3)	Covariates	are	bounded	or	not	normally	distributed	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	

140	

GLM: Poisson distribution

myna <- read.table('mynas_peck.csv',header=T,sep=',')
str(myna)

First things first. Let's check (roughly) for normality of our percentages and check they
don't correlate. Anything with a correlation value less than -0.6 or greater than +0.6 may
raise concerns.

cor(myna$FORAGE, myna$VIGIL, method = "pearson")

	
	
There is definitely a potential problem here. -0.901 is strong negative correlation. In this
case, why wouldn't we include both foraging or vigilance in the model? In a sense, these
two correlated variables are measuring the same thing (probably an index of predator
wariness). Including both variables as predictors will cause problems because they are
attempting to explain the same variance (or because this is a glm, deviance) in the model.
If both were included as predictors, we would describe the two predictors as 'confounded'
because it wouldn't be possible to disentangle their respective effects.
	
boxplot(myna$FORAGE)
boxplot(myna$VIGIL)

These boxplots don't look too bad. If these were response variables we would transform
them. A predictors they are probably okay. Pick one to use in the model (it doesn't really
matter which one--they are effectively the same thing).

RESULT
 [1] -0.9010008	

	
	

141	

Now we can create a model. I'm going to use foraging, but either predictor is fine.

myna.glm <- glm(PECK.rate ~ FORAGE * HUMANS * CONSPECS * VEHICLES *
REGION, data = myna, family = poisson(link = "log"))

Check a summary of the full model:
summary(myna.glm)

Are any of the interactions significant? Do any of them have a P < 0.05?

The output is quite lengthy, and is pasted on the next page. Note that the way the output
is generated lays out all possible contrasts of factorial predictors. NA appears when a
particular pairing doesn't exist in the data. So that for example a situation where Human
= Yes, Conspecifics = Yes, Vehicles = Yes was never recorded in an Urban environment
(the very last line of output with NA next to it).

Also, it is worth being aware at this point that the effect sizes are uninterpretable unless
you can reverse log numbers in your head. They are presented as the transformed values
(logged, because of the link function we used).

	
	

142	

	

RESULT
 Call:
glm(formula = PECK.rate ~ FORAGE * HUMANS * CONSPECS * VEHICLES *
 REGION, family = poisson(link = "log"), data = myna)

Deviance Residuals:
 Min 1Q Median 3Q Max
-0.6655 -0.1941 0.0000 0.1729 0.9167

Coefficients: (8 not defined because of singularities)
 Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.70064 1.23823 1.373 0.170
FORAGE -0.65030 1.73887 -0.374 0.708
HUMANSYES -0.84695 31.92537 -0.027 0.979
CONSPECSYES 0.10434 3.40645 0.031 0.976
VEHICLESYES -0.62352 1.85290 -0.337 0.736
REGIONRural 0.50278 1.66703 0.302 0.763
REGIONSuburban 0.22102 2.90307 0.076 0.939
REGIONUrban 0.58389 5.63319 0.104 0.917
FORAGE:HUMANSYES 0.99741 45.23772 0.022 0.982
FORAGE:CONSPECSYES -0.10079 5.13540 -0.020 0.984
HUMANSYES:CONSPECSYES 0.14058 36.47727 0.004 0.997
FORAGE:VEHICLESYES 0.73939 2.61155 0.283 0.777
HUMANSYES:VEHICLESYES -0.95617 31.42556 -0.030 0.976
CONSPECSYES:VEHICLESYES -1.01260 4.07884 -0.248 0.804
FORAGE:REGIONRural -0.87373 2.43245 -0.359 0.719
FORAGE:REGIONSuburban -0.33694 4.24338 -0.079 0.937
FORAGE:REGIONUrban -0.88110 7.70457 -0.114 0.909
HUMANSYES:REGIONRural 1.08223 10.22576 0.106 0.916
HUMANSYES:REGIONSuburban -0.73287 11.87381 -0.062 0.951
HUMANSYES:REGIONUrban -0.05128 7.59494 -0.007 0.995
CONSPECSYES:REGIONRural -1.54173 4.26170 -0.362 0.718
CONSPECSYES:REGIONSuburban -0.64087 4.33917 -0.148 0.883
CONSPECSYES:REGIONUrban -1.86311 6.54198 -0.285 0.776
VEHICLESYES:REGIONRural 0.62216 5.37331 0.116 0.908
VEHICLESYES:REGIONSuburban 0.44497 6.59480 0.067 0.946
VEHICLESYES:REGIONUrban 1.83943 7.25732 0.253 0.800
FORAGE:HUMANSYES:CONSPECSYES -0.24633 51.44416 -0.005 0.996
FORAGE:HUMANSYES:VEHICLESYES 1.83710 44.52425 0.041 0.967
FORAGE:CONSPECSYES:VEHICLESYES 1.44039 6.00074 0.240 0.810
HUMANSYES:CONSPECSYES:VEHICLESYES 0.64441 30.28584 0.021 0.983
FORAGE:HUMANSYES:REGIONRural -1.35406 14.78706 -0.092 0.927
FORAGE:HUMANSYES:REGIONSuburban 1.43465 16.26004 0.088 0.930
FORAGE:HUMANSYES:REGIONUrban 0.53399 10.40299 0.051 0.959
FORAGE:CONSPECSYES:REGIONRural 2.48408 6.36251 0.390 0.696
FORAGE:CONSPECSYES:REGIONSuburban 0.74691 6.49397 0.115 0.908
FORAGE:CONSPECSYES:REGIONUrban 2.65640 9.17892 0.289 0.772
HUMANSYES:CONSPECSYES:REGIONRural 1.43287 20.67838 0.069 0.945
HUMANSYES:CONSPECSYES:REGIONSuburban -1.36013 21.02278 -0.065 0.948
HUMANSYES:CONSPECSYES:REGIONUrban 1.36053 19.25319 0.071 0.944
FORAGE:VEHICLESYES:REGIONRural -0.69581 7.67118 -0.091 0.928
FORAGE:VEHICLESYES:REGIONSuburban -0.13214 9.17660 -0.014 0.989
FORAGE:VEHICLESYES:REGIONUrban -2.29267 9.95876 -0.230 0.818
HUMANSYES:VEHICLESYES:REGIONRural -0.38255 2.51481 -0.152 0.879
HUMANSYES:VEHICLESYES:REGIONSuburban 2.82335 8.34439 0.338 0.735
HUMANSYES:VEHICLESYES:REGIONUrban -0.56255 2.04104 -0.276 0.783
CONSPECSYES:VEHICLESYES:REGIONRural 1.10659 6.98549 0.158 0.874
CONSPECSYES:VEHICLESYES:REGIONSuburban 1.94293 7.61644 0.255 0.799
CONSPECSYES:VEHICLESYES:REGIONUrban 0.36954 9.62113 0.038 0.969
FORAGE:HUMANSYES:CONSPECSYES:VEHICLESYES -0.51067 45.21351 -0.011 0.991
FORAGE:HUMANSYES:CONSPECSYES:REGIONRural -2.37205 29.20126 -0.081 0.935
FORAGE:HUMANSYES:CONSPECSYES:REGIONSuburban 2.25463 29.02321 0.078 0.938
FORAGE:HUMANSYES:CONSPECSYES:REGIONUrban -2.10929 26.66577 -0.079 0.937
FORAGE:HUMANSYES:VEHICLESYES:REGIONRural NA NA NA NA
FORAGE:HUMANSYES:VEHICLESYES:REGIONSuburban -4.99244 11.23960 -0.444 0.657
FORAGE:HUMANSYES:VEHICLESYES:REGIONUrban NA NA NA NA
FORAGE:CONSPECSYES:VEHICLESYES:REGIONRural -1.68433 10.10136 -0.167 0.868
FORAGE:CONSPECSYES:VEHICLESYES:REGIONSuburban -2.91475 10.77265 -0.271 0.787
FORAGE:CONSPECSYES:VEHICLESYES:REGIONUrban -0.91132 13.24266 -0.069 0.945
HUMANSYES:CONSPECSYES:VEHICLESYES:REGIONRural NA NA NA NA
HUMANSYES:CONSPECSYES:VEHICLESYES:REGIONSuburban NA NA NA NA
HUMANSYES:CONSPECSYES:VEHICLESYES:REGIONUrban NA NA NA NA
FORAGE:HUMANSYES:CONSPECSYES:VEHICLESYES:REGIONRural NA NA NA NA
FORAGE:HUMANSYES:CONSPECSYES:VEHICLESYES:REGIONSuburban NA NA NA NA
FORAGE:HUMANSYES:CONSPECSYES:VEHICLESYES:REGIONUrban NA NA NA NA

(Dispersion parameter for poisson family taken to be 1)

 Null deviance: 21.259 on 159 degrees of freedom
Residual deviance: 11.747 on 104 degrees of freedom
AIC: 624.26

Number of Fisher Scoring iterations: 4	

	
	

143	

If none of the interactions are significant we should remove them from the model and
re-apply the test. If we were going to publish this we might take some more care,
removing the higher order (four and three way) interactions first and checking for lower
order interactions. For the sake of speed though, let's just proceed with removing the
interaction terms:
	
myna.glm <- glm(PECK.rate ~ FORAGE + HUMANS + CONSPECS + VEHICLES +
REGION, data = myna, family = poisson(link = "log"))

Check a summary of the full model:
summary(myna.glm)

The results in the output you should look at are:

Has	overdispersal	occurred?	How	can	you	tell?	
	
Overdispersion	occurs	if	the	residual	deviance	is	greater	than	the	degrees	of	freedom.	In	
this	case,	it	is	not	(20.378	is	less	than	152),	so	the	model	is	okay	in	that	regard.	
	
The	"dispersion	parameter"	of	1	assumes	the	variance	=	mean	(don't	worry	about	this	for	
now.	We'll	return	to	this	a	bit	later).	
	
The	numbers	in	red	are	the	estimated	intercept	and	slopes	on	the	log	scale.	These	are	effect	
sizes	and	the	Std. Error	is	the	error	of	the	effect	size.	If	you	were	to	present	this	as	a	
table	in	a	set	of	results	you	would	present	it	like	so:	
	

RESULT

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.21513 0.29569 4.109 3.97e-05 ***
FORAGE -0.02289 0.40026 -0.057 0.954
HUMANSYES 0.02128 0.10048 0.212 0.832
CONSPECSYES 0.04482 0.08777 0.511 0.610
VEHICLESYES -0.01227 0.08543 -0.144 0.886
REGIONRural 0.04313 0.12123 0.356 0.722
REGIONSuburban 0.06952 0.12261 0.567 0.571
REGIONUrban 0.02047 0.12826 0.160 0.873

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

 Null deviance: 21.259 on 159 degrees of freedom
Residual deviance: 20.375 on 152 degrees of freedom
AIC: 536.89

Number of Fisher Scoring iterations: 4

	
	

144	

Table 1. An example of how to present these results in a tabular form for a report.

 Effect Size SE z P P < 0.05
Intercept 1.22 0.30 4.11 <0.001 *
FORAGE -0.02 0.40 -0.06 0.954
HUMANS (yes) 0.02 0.10 0.21 0.832
CONSPECIFICS (yes) 0.04 0.09 0.51 0.610
VEHICLES (yes) -0.01 0.09 -0.14 0.886
REGION (Rural) 0.04 0.12 0.36 0.722
REGION (Suburban) 0.07 0.12 0.57 0.571
REGION (Urban) 0.02 0.13 0.16 0.873

The intercept wouldn't always be included in a results table because it isn't especially
interesting (we expect it to depart from zero), so although I've included it, the intercept
is often simply omitted.

Breaking down the output

DEVIANCE
Deviance is a measure of 'goodness of fit', or maybe more accurately, 'badness of fit'
because higher numbers indicate a greater deviance away from a good fit. That is, if the
Deviance is high the observed values are not matching the expected values given the
predictors we have included in the model. If the Deviance is low, then the observed
values are matching the expected values given the predictors. This is the reverse of an
R2 value, where a high R2 indicates a good fit and a low R2 indicates a poor fit.

The output calculates and provides Deviance in two ways: the null Deviance and the
residual deviance. The null deviance tells you how well the data fit a model that only
includes the intercept (i.e. in the absence of any of the predictors, how well does the data
fit the model). The residual Deviance tells you how much of the data is explained when
the independent predictors are included in the model. If the predictors are important for
explaining the response, we would expect the residual Deviance to be substantially lower
than the null Deviance.

In the above example, the null Deviance is 21.25 with 159 degrees of freedom, whereas
the residual deviance is 20.38 with 152 degrees of freedom. We have lost some degrees
of freedom because including the predictors eats away at degrees of freedom as per
statistical analyses in general.

This is not an especially substantial improvement in Deviance, and even without looking
at the P values, we could take a guess that the data is probably not being explained by
these predictors in a very convincing way.
	 	

	
	

145	

Interpreting the Coefficients
In the example above we produced a final table as per below (repeated from above):

Table 1. An example of how to present results in a tabular form in a report.

 Effect Size SE z P P < 0.05
Intercept 1.22 0.30 4.11 <0.001 *
FORAGE -0.02 0.40 -0.06 0.954
HUMANS (yes) 0.02 0.10 0.21 0.832
CONSPECIFICS (yes) 0.04 0.09 0.51 0.610
VEHICLES (yes) -0.01 0.09 -0.14 0.886
REGION (Rural) 0.04 0.12 0.36 0.722
REGION (Suburban) 0.07 0.12 0.57 0.571
REGION (Urban) 0.02 0.13 0.16 0.873

However, one thing we are actually interested in is the real effect of a predictor, perhaps
Foraging Time, on the response, in this case Peck.rate. However, coefficients
(effect sizes) in glms are generated in complex ways, and interpreting them in terms of
real world units is far from straightforward. If we want to know the effect of increasing
Foraging Time by one unit, then we have to take into account the effects of the other
predictors. The first point of importance is that interpretation of coefficients is different
for numeric and categorical (factor) predictor variables.

Numeric predictors: The coefficient represents an exponent of a term that can be used
multiplicatively to work out the effect of increasing the predictor by 1 unit.

Factorial predictors: The coefficient represents an exponent of a term that can be used
multiplicatively to work out the effect relative to the base (first) level for the factor. The
base level is the one that is missing for each factor in the output. For example, for Region,
Periurban is missing, and Periurban is the base level.

Because the effects of the coefficients are dependent on other predictors, and because
the coefficient is an exponential term to a base (e.g. exponential to base Euler's number
(2.71828) for Poisson distributions), there are three important points to keep in mind.

1) The effect of a predictor depends on the level of the response
2) Additive changes in predictors has multiplicative effects on the response
3) It isn't possible to just interpret the coefficients unless you can mentally compute

arbitrary exponentials in your head whilst humming Mozart and painting a Neo-
Impressionist masterpiece.

	
	

146	

The best, possibly only, way to really understand how to turn the effect sizes into
comprehensible units is by use of examples. The first thing we need to do is look at our
predictor variables:

• Region Factorial with four levels (periurban, rural, suburban, urban)
• Forage Numeric
• Vigil Numeric
• Humans Factorial with two levels (yes, no)
• Conspecs Factorial with two levels (yes, no)
• Vehicles Factorial with two levels (yes, no)

We used Region, Forage, Humans, Conspecifics and Vehicles in the model, and all of the
predictors need to be taken into account when working out effect sizes in actual units.

• The Forage coefficient represents the effect for every 1 unit increase in Forage.
• The Humans coefficient represents the effect of Yes, relative to No (No = zero).
• The Conspecs coefficient represents the effect of Yes, relative to No (No = zero).
• The Vehicles coefficient represents the effect of Yes, relative to No (No = zero).
• The Rural coefficient represents the effect of Rural, relative to Periurban (= zero).
• The Suburbun coefficient represents the effect of Suburban, relative to Periurban.
• The Urban coefficient represents the effect of Urban, relative to Periurban.
• The Intercept coefficient is the baseline, and all other coeffecients are relative to it

To work out the effects of the various predictors we need to take into account the state
of the whole system, so to speak. The following examples should help clarify this:

The estimated Peck Rate for a Forage of 1.0 (100% of time spent foraging), with no
Humans, no conspecifics, no vehicles, in a Periurban environment:

exp(1.21513 + 1*-0.02289 + 0 + 0 + 0 + 0)
[1] 3.294453

The estimated Peck Rate for a Forage of 0.5 (50% of time spent foraging), with no
Humans, no conspecifics, no vehicles, in a Periurban environment:

exp(1.21513 + 0.5*-0.02289 + 0 + 0 + 0 + 0)
[1] 3.332374

The estimated Peck Rate for a Forage of 0.5 (50% of time spent foraging), with Humans,
no conspecifics, no vehicles, in a Periurban environment:

exp(1.21513 + 0.5*-0.02289 + 0.02128 + 0 + 0 + 0)
[1] 3.404047
	

	
	

147	

The estimated Peck Rate for a Forage of 0.5 (50% of time spent foraging), with Humans,
no conspecifics, no vehicles, in a Suburban environment:

exp(1.21513 + 0.5*-0.02289 + 0.02128 + 0 + 0 + 0.06952)
[1] 3.649116

Pretty soon, you can see how by playing around with the numbers you can work out the
situation under which Peck Rate is estimated to be highest, and the situation under which
Peck Rate is estimated to be lowest.

Note also, that we are using 0.5, 1.0 etc for Forage, because we have a variable that was
measured as a percentage. If instead you had measured the number of minutes spent
foraging instead, then 1*-0.02289 would represent 1 min spent foraging, 2*-
0.02289 would represent two minutes spent foraging etc.

Using the Predict Function

Note that you can also use the predict function to produce the same estimates:

The estimated Peck Rate for a Forage of 0.5 (50% of time spent foraging), with no
Humans, no conspecifics, no vehicles, in a Periurban environment (as above):

exp(1.21513 + 0.5*-0.02289 + 0 + 0 + 0 + 0)
[1] 3.332374

Using the	predict function:	
	
create a dataframe holding the model states you want
be careful to get spelling exactly right!

newdata <- data.frame(FORAGE = 0.5, HUMANS = "NO", CONSPECS =
"NO", VEHICLES = "NO", REGION = "Peri-urban")
	
use the model you created earlier and predict function

predict(myna.glm, newdata, type="response")
	
	 	

	
	

148	

Using the predict function: graphing output for a given range

You can also ask the predict function to return a range of responses for a given
predictor. This is typically easiest to plot and interpret if you look at a range for one
predictor while keeping the others set, which we will do here for forage.

myna.glm <- glm(PECK.rate ~ FORAGE + HUMANS + CONSPECS + VEHICLES +
REGION, data = myna, family = poisson(link = "log"))

summary(myna$FORAGE) # to see ranges

forage.data<-seq(0, 1, by=0.01) # create a range of numbers from 0 to
1 at 0.01 increments. This could be any range of numbers but because
Forage is a proportion from zero to one, this is a sensible range to
look at.

forage.data # Look at the forage data

newdata <- data.frame(FORAGE = forage.data, HUMANS = "NO", CONSPECS
= "NO", VEHICLES = "NO", REGION = "Peri-urban")

newdata # look at the dataframe

predict(myna.glm, newdata, type="response") # get responses across
the specified range. This will just spit out numbers, which lets us
check it is working.

RESPONSE <- predict(myna.glm, newdata, type="response") # drop into
an object called RESPONSE

plot(RESPONSE~FORAGE, newdata, type="l") # Plot status across the
ranges of FORAGE

Counterintuitively,	 peck	 rate	 is	 highest	when	 time	 spent	 foraging	 is	 lowest.	 Perhaps	birds	
compensate	for	less	time	foraging	by	pecking	faster?	
	

	
	

149	

Relative Strength of Effect

But what if you simply want to be able to discuss the effects of the predictors in terms
of their relative strengths? The following approach has just been made up by me right at
this moment, so you probably want to run it past a real statistician before using it in
public. That said, in principle it seems like this ought to work fine.

1) Turn the z values or t values into non-signed values (all positive)
2) Sum up and average any z or t values for factors with multiple levels
3) Work out the percentage of each z or t value relative to the intercept z or t value
4) Arbitrarily group predictors as follows

• >50% Very Strong Relative Effect
• 30-50% Strong Relative Effect
• 15-30% Moderate Relative Effect
• 10-15% Weak Relative Effect
• 5-10% Very Weak Relative Effect
• <5% Negligible Relative Effect

RELATIVE EFFECT EXAMPLES

Relative effects of predictors on the Peck Rate of mynas

Call:
glm(formula = PECK.rate ~ FORAGE + HUMANS + CONSPECS + VEHICLES +
 REGION, family = poisson(link = "log"), data = myna)

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.21513 0.29569 4.109 3.97e-05 ***
FORAGE -0.02289 0.40026 -0.057 0.954
HUMANSYES 0.02128 0.10048 0.212 0.832
CONSPECSYES 0.04482 0.08777 0.511 0.610
VEHICLESYES -0.01227 0.08543 -0.144 0.886
REGIONRural 0.04313 0.12123 0.356 0.722
REGIONSuburban 0.06952 0.12261 0.567 0.571
REGIONUrban 0.02047 0.12826 0.160 0.873 	

Forage = 0.057/4.109 = 0.0139 = 1.4% = Negligible effect
Humans = 0.212/4.109 = 0.0516 = 5.1% = Very weak effect
Conspecifics = 0.511/4.109 = 0.1243 = 12.4% = Weak effect
Vehicles = 0.144/4.109 = 0.0350 = 3.5% = Negligible effect
Region = (0.356 + 0.567 + 0.160) / 3 = 0.361
 = 0.361/4.109 = 0.0879 = 0.9% = Negligible effect

	 	

	
	

150	

Relative	effects	of	predictors	on	the	number	of	darters	observed	in	two	rivers	
	
Call:
glm(formula = darters ~ river + pH + temp, family = poisson, data =
darterData)

Coefficients:
 Estimate Std.Error z value Pr(>|z|)
(Intercept) 3.144257 0.218646 14.381 < 2e-16 ***
riverWatauga -0.049016 0.051548 -0.951 0.34166
pH 0.086460 0.029821 2.899 0.00374 **
temp -0.059667 0.009149 -6.522 6.95e-11 ***

River System = 0.951/14.381 = 0.0661 = 6.6% = Very weak effect
pH = 2.899/14.381= 0.2015 = 20.2% = Moderate effect
Temperature = 6.522/14.381 = 0.4535 = 45.4% = Strong effect

	

	
	

151	

Evaluating assumptions for a GLM
We really only have one assumption to check (is the link function correct?), but we do
need to check this using a few different checks.
1) Check for overdispersion
2) Look at diagnostic plots
3) Check that mean:variance is approximately 1:1

myna.glm <- glm(PECK.rate ~ FORAGE + HUMANS + CONSPECS + VEHICLES +
REGION, data = myna, family = poisson(link = "log"))

Our first step is to compare the Residual Deviance with the degrees of freedom. This is
taken from the summary(myna.glm) output. We have Residual deviance: 20.378 on 152
degrees of freedom, which is fine. We want to see a lower residual deviance than degrees
of freedom. If residual deviance is greater than the degrees of freedom, then
'overdispersion' has occurred, and the assumptions of the model are not met.

Next check diagnostic plots of the model. These are interpeted exactly the same way as
diagnostic plots for other types of linear models. That is, you don't want to see a wedge
in the residuals vs fitted (test of equal variance of residuals), but you do want to see the
QQ dots following the line (test of normality of residuals).

par(mfrow=c(2,2))
plot(myna.glm)	

These look mostly fine. The QQ plot is probably the worst of them, and it would be
borderline for being acceptable.

	
	

152	

We also have to check that the assumption (Dispersion parameter for poisson
family taken to be 1) is satisfied. To do this we need to check the mean and
variance for the response variable split up by the main predictor of interest. We want to
see that they are approximate equal, i.e. 1:1.

attach(myna)
tapply(PECK.rate,REGION,mean)
tapply(PECK.rate,REGION,var)
	
tapply(PECK.rate,REGION,mean)
Peri-urban Rural Suburban Urban
3.375 3.550 3.675 3.500

tapply(PECK.rate,REGION,var)
Peri-urban Rural Suburban Urban
0.2916667 0.5615385 0.6352564 0.4615385

The variances are well below the means. We could accept a difference of maybe ±25%
but this difference is too extreme. So that actually, we need to re-run the model using a
quaispoisson distribution. But why didn't we just start with a quasipoisson distribution
and save the hassle? Remember: simpler	models	are	always	preferred.	
	
We start with the simplest approach and work towards complexity if it is needed. Reapply
the test using a quasipoisson distribution. Notice how the assumed dispersion parameter
of 1 has now been adjusted to a value of 0.1380571. Remodel using the quasipoisson
distribution:	

myna.glm <- glm(PECK.rate ~ VIGIL + HUMANS + CONSPECS + VEHICLES +
REGION, data = myna, family = quasipoisson(link = "log"))

Check a summary of the full model:
summary(myna.glm)

If either dispersion > df or var/mean is not equal to 1 (roughly) then you need to use a
quasipoisson distribution or a quasibinomial. You will find that the dispersion parameter
changes (it is no longer taken to be 1). Overdispersion will probably still occur, but this
is no longer a concern if you are using one of the quasi- distributions.

To check for overdisperstion in a glmer model (i.e. one with mixed effects) use dispersion
check function in library blemco.
	
install.packages("blemco")
library(blemco)
dispersion_glmer(yourmodel.glmer)

if over 1.4 or under 0.75 you may have dispersion problems
	 	

	
	

153	

	
	
Notice how the dispersion parameter is no longer taken to be 1? You can check the
diagnostic plots again, although you'll find that the qq plot isn't improved tremendously.	
	 	

RESULT

> myna.glm <- glm(PECK.rate ~ VIGIL + HUMANS + CONSPECS + VEHICLES
+ REGION, data = myna, family = quasipoisson(link = "log"))
> summary(myna.glm)

Call:
glm(formula = PECK.rate ~ VIGIL + HUMANS + CONSPECS + VEHICLES +
 REGION, family = quasipoisson(link = "log"), data = myna)

Deviance Residuals:
 Min 1Q Median 3Q Max
-0.9742 -0.2982 -0.1761 0.2742 1.1920

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.19413 0.05408 22.080 <2e-16 ***
VIGIL 0.02058 0.15043 0.137 0.891
HUMANSYES 0.02152 0.03723 0.578 0.564
CONSPECSYES 0.04459 0.03266 1.366 0.174
VEHICLESYES -0.01247 0.03165 -0.394 0.694
REGIONRural 0.04314 0.04507 0.957 0.340
REGIONSuburban 0.06934 0.04558 1.521 0.130
REGIONUrban 0.02021 0.04756 0.425 0.671

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for quasipoisson family taken to be 0.1380548)

 Null deviance: 21.259 on 159 degrees of freedom
Residual deviance: 20.375 on 152 degrees of freedom
AIC: NA

Number of Fisher Scoring iterations: 4

	
	

154	

Adjusting GLMs for different sampling efforts

An offset variable can be used to adjust for differences in sampling effort in a glm. In the
following example there is a sampling effort variable (this would be a column in your
data sheet with trap nights or samples per site) included as YOUR.SAMPLING.EFFORT.

model.glm <- glm(YOUR.COUNT ~ YOUR.PREDICTORS +
offset(YOUR.SAMPLING.EFFORT), data = yourdata, family=poisson	(link
= "log"))

Here's how a reduced model (with no interactions) might look:

model.glm <- glm(COUNT ~ DISTANCE.FROM.PATH + NEAR.WATER +
LOGS.COUNT + MICROHABITAT + CANOPY.COVER + offset(SAMPLING.EFFORT),
data = spider.counts, family=poisson(link = "log"))

In principal, the method for working through the glm is very similar to an ANOVA. You
need to think about the order of predictors, look for significant interactions and remove
them, and avoid over-fitting your model with too many predictors.

We've use an 'offset' variable to take into account differences in sampling effort, so that
we don't have to do anything to the raw count (i.e. we don't need to generate a ratio of
counts per unit of sample effort). You do need to check the assumptions of the model,
and remember that glm assumptions are different to ANOVA assumptions.

	 	

	
	

155	

Zero Inflated glms

Another problem that can occur is if there are a lot of zeroes in the data. In this situation
we would want to check the glm against what is called a 'zero inflated' glm. A zero
inflated glm is specifically designed to cope with datasets that have a lot of zeroes.
Unfortunately, there is no core zero inflated glm model, so we need to make use of a
library:

install.packages("pscl")
library(pscl)

The code is slightly different. The 'offset' variable is placed at the end, like so:

zeromodel.glm <- zeroinfl(COUNT ~ DISTANCE.FROM.PATH + NEAR.WATER +
LOGS.COUNT + MICROHABITAT + CANOPY.COVER, data = spider.counts,
offset = SAMPLING.EFFORT) # zero inflated glm

A Vuong Test can be used to compare the ordinary glm with the zero inflated glm. If
there is a significant difference, then the zero inflated glm is better.

model.glm <- glm(COUNT ~ DISTANCE.FROM.PATH + NEAR.WATER +
LOGS.COUNT + MICROHABITAT + CANOPY.COVER + offset(SAMPLING.EFFORT),
data = spider.counts, family=poisson(link = "log")) # standard glm
	
vuong(zeromodel.glm, model.glm)

Vuong Non-Nested Hypothesis Test-Statistic: 4.824468
(test-statistic is asymptotically distributed N(0,1) under the
 null that the models are indistinguishible)
in this case:
model1 > model2, with p-value 7.018877e-07

In this case the P value is significant (P < 0.05), which indicates that model 1 (the zero
inflated glm) is better than model 2 (the standard glm).	 	

	
	

156	

GLM: Binomial distribution

You should now be able to run a binomial GLM (using a binary response variable). The
steps are the same as for a GLM using a poisson distribution, except that the family
distribution is set to binomial(link = "logit") and if you need to resort to it, the
quasi distribution family is quasibinomial(link = "logit").

Using a binary response variable:

Import the data yellowrobin.csv data set.
robin <- read.table('yellowrobin.csv',header=T,sep=',')

Check the data
str(robin)

This data shows presence (= 1) and absence (= 0) for Eastern Yellow Robins in
southeastern Victoria. The predicator variables are ordinal habitat scores (0 = none, 5 =
heavy) and the size of the forest path in hectares (ha).

robin <- read.table('yellowrobin.csv',header=T,sep=',')
str(robin)

attach(robin) # A quick way to look at multiple correlations
round(cor(robin[,4:7]),2) # correlation grid: columns 4-7

robin.glm <- glm(Pr.Ab ~
AREA.ha*LEAF.LITTER*SHRUBS*CANOPY*WOODY.DEBRIS, family =
binomial(link="logit"), data = robin)
summary(robin.glm)

You will receive an error message at this point. The model is overparamtised and cannot
be build (too many predictors, not enough observations). If we were going to publish this
we would procede to check interactions in a careful, interaction-by-interaction approach,
but for the sake of moving along we will just remove the interaction terms for now. This
will drastically reduce the number of predictor terms in the model.

robin.glm <- glm(Pr.Ab ~
AREA.ha+LEAF.LITTER+SHRUBS+CANOPY+WOODY.DEBRIS, family =
binomial(link="logit"), data = robin)

	
	

157	

Now check assumptions.

1) Has over-dispersion occurred?
summary(robin.glm) # just looking at the dispersion part of the
output

95.806 is less than 114, so overdispersion has not occurred.

2) How do the diagnostic plots look?

par(mfrow=c(2,2))
plot(robin.glm)

These plots look okay, considering we are working with binary data. There is no
obvious 'wedge' in the Residuals vs Fitted and the QQ looks fine (i.e. the dots are more
or less on the line).

RESULT

(Dispersion parameter for binomial family taken to be 1)

 Null deviance: 166.222 on 119 degrees of freedom
Residual deviance: 95.806 on 114 degrees of freedom

	
	

158	

3) Is mean:var approximately 1:1?

attach(robin) # just looking at the man and variance by one
category. We could check all the predictors if unsure about this
one.
tapply(Pr.Ab,SHRUBS,mean)
tapply(Pr.Ab,SHRUBS,var)

These look more or less proportional. They are not exactly 1:1, but they are probably
close enough to be okay.

robin.glm <- glm(Pr.Ab ~
AREA.ha+LEAF.LITTER+SHRUBS+CANOPY+WOODY.DEBRIS, family =
binomial(link="logit"), data = robin)

summary(robin.glm)

	

RESULT

> tapply(Pr.Ab,SHRUBS,mean)
 0 1 2 3 4 5
0.7428571 0.5000000 0.3000000 0.4074074 0.2142857 0.3333333

> tapply(Pr.Ab,SHRUBS,var)
 0 1 2 3 4 5
0.1966387 0.2619048 0.2333333 0.2507123 0.1813187 0.2424242

	
	

159	

Interpretation
Which explanatory variables were significantly associated with Yellow Eastern Robin
presence or absence?

	

Area of forest fragment and Shrubs appear to have a significant association with probability of
robin presence.

RESULT

> summary(robin.glm)

Call:
glm(formula = Pr.Ab ~ AREA.ha + LEAF.LITTER + SHRUBS + CANOPY
+
 WOODY.DEBRIS, family = binomial(link = "logit"), data =
robin)

Deviance Residuals:
 Min 1Q Median 3Q Max
-2.2363 -0.6343 -0.1487 0.5384 2.5379

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -4.920642 1.403663 -3.506 0.000456 ***
AREA.ha 0.014290 0.002854 5.007 5.54e-07 ***
LEAF.LITTER 0.099062 0.177167 0.559 0.576064
SHRUBS 0.528087 0.224560 2.352 0.018690 *
CANOPY -0.275388 0.208429 -1.321 0.186416
WOODY.DEBRIS -0.096332 0.154887 -0.622 0.533973

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’
1

(Dispersion parameter for binomial family taken to be 1)

 Null deviance: 166.222 on 119 degrees of freedom
Residual deviance: 95.806 on 114 degrees of freedom
AIC: 107.81

Number of Fisher Scoring iterations: 5

	
	

160	

For the Eastern Yellowbreasted robins, what is the probability of robins being present
in a forest block of 100 ha with Leaf Litter = 1, Shrubs = 2, Canopy = 1 and Woody
Debris = 3?

You can use the same method we used above for a Poisson model, except note that
because we ned to reverse a logistic regression, we need an inverse logit function, not
an exponent.

??inv.logit

It trurns out that inv.logit is in the boot library.

library(boot)
inv.logit(Intercept + multiplier*X + multiplier*Y + multiplier*Z)

Now	we'll	have	a	go	at	working	out	the	probability	of	robins	being	present	in	a	forest	block	
of	200	ha	with	Leaf	Litter		=	0,	Shrubs	=	5,	Canopy	=	4	and	Woody	Debris	=	4.	The	values	
come	from	the	estimates	on	the	previous	page.	
	
inv.logit(-4.920642 + 200 * 0.014290 + 0 * 0.099062 + 5 * 0.528087 +
4 * -0.275388 + 4 * -0.096332)
	
	

	

Given the above conditions, our model is predicting a 28.7% chance of robin presence
in a forest block.

RESULT

> inv.logit(-4.920642 + 200 * 0.014290 + 0 * 0.099062 + 5 *
0.528087 + 4 * -0.275388 + 4 * -0.096332)

[1] 0.2871867

	
	

161	

Graphing
There	are	several	options	for	graphing	binary	data	against	a	continuous	predictor.	Three	
that	you	might	find	useful	are	the	conditional	density	plot,	the	spline	plot	and	a	proportion	
plot.	First	both	your	response	needs	to	be	afactor:	
	
dataset$your.response <- as.factor(dataset$your.response)
	

Conditional Density Plot
cdplot(your.response ~ your.predictor, data = your.data)

Spline Plot
spineplot(your.response ~ your.predictor, data = your.data)

Usually	we	would	only	plot	the	significant	relationships.	We	will	plot	the	relationship	with	
area	of	forest	fragment	in	ha.	
	
robin$Pr.Ab <- as.factor(robin$Pr.Ab)

Conditional density plot
cdplot(Pr.Ab ~ AREA.ha, data = robin)

Spine plot
spineplot(Pr.Ab ~ AREA.ha, data = robin)

You wouldn't typically report both plots, rather you'd tend to pick the one that you
think shows the relationship most clearly. In both cases the dark section represents
proportion of forest fragments where robins where absent. This decreases as the area
of the forest gets larger.

	
	

162	

Mixed Effect Models
Mixed effect models have become very popular in biology. We're only going to look at
them briefly because they can become quite complicated and we don't want to get
bogged down in too many details at this point.

A mixed effect model contains two types of explanatory variables. These are fixed effects
and random effects. The difference between these variables is that:

• Fixed effects: Influence only the mean of the response variable (y)
• Random effects: Influence only the variance of the response variable (y)

Biologists can get into elaborate debates about whether a variable should be a fixed or
random effect when entered into a model. As a very rough rule of thumb usually (but not
always) the fixed effects are the explanatory variables of interest, whereas the random
effects are the factors that you want to control for to avoid pseudoreplication (random
effects are always factors, whereas fixed effects can be continuous variables, counts,
binary data or factors). If you dig into this deeper, you will actually find many conflicting
definitions. Here are a few collated by Andrew Gelman (Analysis of variance—why it is
more important than ever (2005) Annals of Statistics):

(1) Fixed effects are constant across individuals, and random effects vary. For example, in a
growth study, a model with random intercepts a_i and fixed slope b corresponds to parallel lines
for different individuals i, or the model y_it = a_i + b t. Kreft and De Leeuw (1998) thus distinguish
between fixed and random coefficients.

(2) Effects are fixed if they are interesting in themselves or random if there is interest in the
underlying population. Searle, Casella, and McCulloch (1992, Section 1.4) explore this distinction
in depth.

(3) “When a sample exhausts the population, the corresponding variable is fixed; when the
sample is a small (i.e., negligible) part of the population the corresponding variable is random.”
(Green and Tukey, 1960)

(4) “If an effect is assumed to be a realized value of a random variable, it is called a random
effect.” (LaMotte, 1983)

(5) Fixed effects are estimated using least squares (or, more generally, maximum likelihood) and
random effects are estimated with shrinkage (“linear unbiased prediction” in the terminology of
Robinson, 1991). This definition is standard in the multilevel modeling literature (see, for
example, Snijders and Bosker, 1999, Section 4.2) and in econometrics.

	
	

163	

The problem is that these various definitions conflict, sometimes wildly. However, from
a pragmatic point of view, the important thing is that a random effect is (1) a factor (i.e.
not a covariate) that is taken into account in a model (2) before the fixed effects are
examined. This means that if most of the variance in a model can be explained by a fixed
effect (animal ID, plot, site, year), then that variance is removed before the fixed effects
get a chance to explain anything. This effectively controls for pseudoreplication. In effect,
we are trying to control for 'groups' with shared properties. For our purposes, a group is
any set of individuals that share some sort of common property.

• Multiple observations of an animal
• Multiple animals from a site
• Multiple sites within a landscape
• Multiple landscapes within a climactic range

Any categorical (factorial) variable can potentially be a group.

To understand how we use mixed effects in models, the best thing is probably to work
through an example. To do this open the agilis-morphometrics.csv data set. This is a cut-
down version of a PhD dataset (the actual data set is much larger). Individual agile
antechinus have been captured at study sites that are either forest fragments or
undisturbed continuous forest sites (this is a comparative control). The problem however,
is that we have multiple individuals from each site, and there were two trapping grids
per site, and it looks like we might want to control for the sampling year as well.

We could control for these things (site, trapping grid and year) by averaging all of the
values by these factors, but a lot of information is going to be lost if we do that.

It would be better to include that information in a model. We're going to have a go at a
simple linear mixed effect model and then we'll attempt a generalised mixed effect
model.

	 	

	
	

164	

Linear mixed effects models
The assumptions for a linear mixed effect model are the same as for a linear model or
ANOVA:

ASSUMPTIONS OF LME MODEL
(1) Residuals are normally distributed
(2) Residuals must be independent (collected randomly)
(3) Residuals have equal variances

PROBLEMS MAY OCCUR IF…
(1) Predictor variables correlate

(two variables explain the same thing)
(2) The model is over-parameterised

(too many predictors given your data set size)
(3) Covariates are bounded or not normally distributed

In linear mixed effect models order is important!

The assumptions for a generalised linear mixed effect model are the same as for a
generalised linear model:

ASSUMPTIONS OF GLMME MODEL
(1) Observations are independent (collected randomly)
(2) Correct link function is used
 Residuals must fit the nominated error distribution
 Overdispersion should not occur

PROBLEMS CAN OCCUR IF…
(1) Predictor variables are correlated
(2) Model is over-parameterised
(3) Covariates are bounded or not normally distributed

Notice how the 'problems' are the same for both lme and glmme. The problems (which
are not absolute assumptions, but which can cause models to be less accurate, or fail to
even work) are typical of a lot of models. Often, it is a good idea to check your predictor
variables for correlation at the outset regardless of what approach you are going to take.
If nothing else, you'll want to know whether it might be present in the data because
sometimes correlation is itself interesting to examine.

	
	

165	

Linear mixed effect model example

There is a strong preference in the published literature for using the package lme4 for
linear mixed effects models over nlme. I'll discuss key differences below. The nlme
package is easier to learn from the start with, though, and we will use it as a starting
point.

Load the necessary library:
library(nlme) # remember to install if not already installed

Import the data set, check it and remove missing values:
agilis <- read.table('agilis-morphometrics.csv',header=T,sep=',')
agilis <- na.omit(agilis)
str(agilis)
	
agilis.lme <- lme(MASS ~ MONTH + SEX * HABITAT, random = ~1|	
YEAR/SITE/TRAP.GRID, method="REML", data = agilis)
	
MASS The response variable	
MONTH + SEX * HABITAT The fixed effects.	
	 MONTH is a covariate.	
	 SEX and	HABITAT are factors	
	YEAR/SITE/TRAP.GRID	 The random effects	

	 TRAP.GRID is nested inside	SITE which is nested
inside	YEAR	

method="REML"	 Instruction to use	REML not	ML	
	 REML is better for accuracy (especially of P values)	
	 ML is necessary for model selection
data = agilis	 The data	
	
	
plot(agilis.lme) # look at the residual plot (equal variances)
library(car)	
qqPlot(resid(agilis.lme)) # look at the QQ plot (normality)	
	
summary(agilis.lme)
anova(agilis.lme)	

Both of these options provide P values. The anova option is simpler and often easier for
you to interpret. Here are some extra things you can pull out of the model:

(cor(fitted(agilis.lme),getResponse(agilis.lme))^2) # R2 for the
model

AIC(agilis.lme) # An AIC for the model

VarCorr(agilis.lme) # The percentage of variance explained for the
random effects	

	
	

166	

Presenting the LME results
You wouldn't want to present the whole output of the model in a research paper. The
most important parts are shown in red.

> summary(agilis.lme)
Linear mixed-effects model fit by REML
 Data: agilis
 AIC BIC logLik
 1037.378 1066.881 -509.689

Random effects:
 Formula: ~1 | YEAR
 (Intercept)
StdDev: 0.1149765

 Formula: ~1 | SITE %in% YEAR
 (Intercept)
StdDev: 2.833205

 Formula: ~1 | TRAP.GRID %in% SITE %in% YEAR
 (Intercept) Residual
StdDev: 0.0006117597 2.409616

Fixed effects: MASS ~ MONTH + SEX * HABITAT
 Value Std.Error DF t-value p-value
(Intercept) 14.238141 1.7873446 81 7.966086 0.0000
MONTH 0.423502 0.2924507 56 1.448113 0.1532
SEXM 6.049804 0.4890037 81 12.371694 0.0000
HABITATFRAG 0.128548 0.9001976 56 0.142800 0.8870
SEXM:HABITATFRAG 2.388402 0.7072864 81 3.376853 0.0011
 Correlation:
 (Intr) MONTH SEXM HABITA
MONTH -0.934
SEXM -0.161 0.006
HABITATFRAG -0.255 0.005 0.308
SEXM:HABITATFRAG 0.110 -0.003 -0.691 -0.431

Standardized Within-Group Residuals:
 Min Q1 Med Q3 Max
-2.05428158 -0.58097493 -0.04721096 0.51659196 2.63548661

Number of Observations: 201
Number of Groups:
 YEAR SITE %in% YEAR TRAP.GRID %in% SITE
%in% YEAR
 2 60 118

Both of these options provide slightly different reporting choices. You don’t always need
to report the significance for the intercept because it isn’t surprising that the line is not
passing through zero. For the summary(model.lme) option the Value is an effect
size and the Std.Error is the Standard Error of the effect size. The direction of effect
is indicated in the left-hand column.

So, for example, SEXM means that there was a positive 6.05 g trend towards males being
heavier than females. The standard error of this was ±0.48. Because the standard error
does not overlap with zero the effect is significant. That is, the error also tells us whether
the effect is significantly different from zero.

	
	

167	

The anova(model.lme) option is much simpler and doesn’t have effect sizes built in.
report everything in red: The numDF is the numerator degrees of freedom and the denDF
is the denominator degrees of freedom, as per an ANOVA. Also, because out predictors
are factors (not numeric), the anova option might be generating more sensible results .

> anova(agilis.lme)
 numDF denDF F-value p-value
(Intercept) 1 81 2490.2066 <.0001
MONTH 1 56 1.8089 0.1841
SEX 1 81 413.3465 <.0001
HABITAT 1 56 3.1368 0.0820
SEX:HABITAT 1 81 11.4031 0.0011

The other important bit of the model is how much variance was explained by the
random effects and how much was explained by the residuals (the fixed effects +
unexplained variance that is left over). The best way to present this is as a percentage
of total variance explained:

> VarCorr(agilis.lme)
 Variance StdDev
YEAR = pdLogChol(1)
(Intercept) 1.321959e-02 0.1149764591
SITE = pdLogChol(1)
(Intercept) 8.027053e+00 2.8332053471
TRAP.GRID = pdLogChol(1)
(Intercept) 3.742499e-07 0.0006117597
Residual 5.806251e+00 2.4096164438

	

YEAR 0.013127 0.013127 / 13.8 = 0.10%
SITE 8.027108 8.027108 / 13.8 = 58.17%
TRAP.GRID 0.000000 0.000000 / 13.8 = 0.00%
Residual 5.806250 5.806250 / 13.8 = 42.07%
SUM 13.8

The Random Effects are taken into account first and then after these have been used to
explain variation in the response variable, the leftover variance (called the 'residual
variance') is used for the Fixed Effects. This is how the Random Effects control for the
Fixed Effects. If it turns out that actually Year, Site and Trap Grid explain all the variation
in the data then there will be no variation left over for the Fixed Effects to explain.

In this case, the Random Effects are explaining in total about 60% of the variation in the
response variable (mass of agile antechinus). This leaves about 40% for the Fixed Effects.

There is some code on the next page that does the same thing in R.
	 	

	
	

168	

agilis.var <- VarCorr(agilis.lme)
agilis.var # look at the variances

YEAR <- as.numeric(agilis.var[2]) # grab the variance for year
SITE <- as.numeric(agilis.var[4]) # grab the variance for site
TRAP.GRID <- as.numeric(agilis.var[6]) # for trapping grid
RESIDUALS <- as.numeric(agilis.var[7]) # grab the unexplained
variance that will be passed to the fixed effects

YEAR;SITE;TRAP.GRID;RESIDUALS # check the numbers
TOTAL.VARIANCE <- YEAR+SITE+TRAP.GRID+RESIDUALS # sum them

YEAR/TOTAL.VARIANCE # calculate proportion
SITE/TOTAL.VARIANCE # calculate proportion
TRAP.GRID/TOTAL.VARIANCE # calculate proportion
RESIDUALS/TOTAL.VARIANCE # calculate proportion
	

	

RESULT

> agilis.var <- (VarCorr(agilis.lme))
> agilis.var

 Variance StdDev
YEAR = pdLogChol(1)
(Intercept) 1.321958e-02 0.1149764269
SITE = pdLogChol(1)
(Intercept) 8.027053e+00 2.8332053467
TRAP.GRID = pdLogChol(1)
(Intercept) 3.744421e-07 0.0006119168
Residual 5.806251e+00 2.4096164440

> YEAR <- as.numeric(agilis.var[2])
> SITE <- as.numeric(agilis.var[4])
> TRAP.GRID <- as.numeric(agilis.var[6])
> RESIDUALS <- as.numeric(agilis.var[7])

> YEAR;SITE;TRAP.GRID;RESIDUALS
[1] 0.01321958
[1] 8.027053
[1] 3.744421e-07
[1] 5.806251

> TOTAL.VARIANCE <- YEAR+SITE+TRAP.GRID+RESIDUALS

> YEAR/TOTAL.VARIANCE
[1] 0.0009547219
> SITE/TOTAL.VARIANCE
[1] 0.5797161
> TRAP.GRID/TOTAL.VARIANCE
[1] 2.704232e-08
> RESIDUALS/TOTAL.VARIANCE
[1] 0.4193291

	
	

169	

Table 1. Example of how to present linear mixed effect model results. Note that because there is a
significant interaction of SEX x HABITAT, the next step would be to split the data by SEX and re-run
the analyses to check what the effect of habitat is on the two sexes. The significant interaction term (as
with regression analyses, ANOVAs) renders the main effects of SEX and HABITAT uninterpretable as
they stand. Some unravelling of the complex relationship is required.

Fixed Effects DF (num, dem) F P
Intercept 1,81 2490.2 < 0.001
MONTH 1,56 1.81 0.184
SEX 1,81 413.3 < 0.001
HABITAT 1,56 3.1 0.082
SEX x HABITAT 1,81 11.4 0.001
Random effects Percentage of variation explained
YEAR 0.1%
SITE 58.0 %
TRAP GRID < 0.1%
Residual 42.0%

	

But what about AICs? What are they used for? An AIC is an information criterion used to
pick the best model. This is a different approach to using P-values and you should
probably not use AICs and P values in the same analysis.

AICs use a statistic called Deviance that is something like an R2 to work out which model
best explains the data. The AIC then penalises models with too many predictors. If you
have 20 predictors and 20 data points you will have a perfect model, but it is also not
very useful because each data point is explained by one predictor. Instead what you want
is the most parsimonious model: the model that explains the most variation in the data
whilst using the fewest predictors.

Instead of trying to find which predictors are significant, AICs are used to decide which
model best explains the variation in the response (i.e. which predictors to include and
which to leave out) given the number of predictors used. Try the following and see what
happens. Note that we have switch REML to ML because we want to compare models now
instead of obtain P values…

agilis.lme <- lme(MASS ~ MONTH + SEX * HABITAT, random = ~1|	
YEAR/SITE/TRAP.GRID, method="ML", data = agilis)

install.packages("MuMIn")
library(MuMIn)

dredge(agilis.lme)

We won't get into this in detail here. If you are interested in AICs have a look at the
Appendix at the model selection chapter.		 	

	
	

170	

nlme and lme4
If you hunt around on the various R groups you’ll find that most of the stats gurus advise
in favour of using lme4 instead of nlme for linear mixed effect models. The package lme4
does have more accurate algorithms, but the difference is marginal and for our purposes
the nlme package is easier to use. However, to run the same model using lme4 you would
use this code:

install.packages("lme4")
library(lme4)

agilis <- read.table('agilis-morphometrics.csv',header=T,sep=',')
agilis <- na.omit(agilis) # remove missing observations
str(agilis)
	
agilis.lmer <- lmer(MASS ~ MONTH + SEX * HABITAT +
(1|	YEAR/SITE/TRAP.GRID), REML = TRUE, data = agilis)

summary(agilis.lmer) # Note: there are no P-values!
anova(agilis.lmer) # Note: there are no P-values!

The author who manages lme4 feels that there isn't an accurate way to calculate P
values for linear mixed effects models. This may well be true, but unless your P values
are marginal (in which case you should be cautious with your interpretation anyway), and
as long as you are looking at effect sizes as well, and thinking about biological
meaningfulness, slightly inaccurate P values are not going to make or break your work.
We will use a method out of another package, lmerTest.

install.packages("lmerTest")
library(lmerTest)

agilis.lmer <- lmer(MASS ~ MONTH + SEX * HABITAT +
(1| YEAR/SITE/TRAP.GRID), REML = TRUE, data = agilis) # Rebuild
model after having loaded the new library

summary(agilis.lmer)
anova(agilis.lmer)
	
Results	 are	on	 the	next	page.	 If	 you	 compare	 the	output,	 the	lme4	model	 has	produced	
largely	similar	results	except	that	Habitat	based	on	nlme	was	marginally	non-significant	(P	=	
0.08),	 whereas	 for	 lme4	 it	 is	 not	 significant	 (P	 =	 0.005).	 Given	 that	 the	 interaction	 term	
SEX:HABITAT	 is	 also	 significant,	 the	 main	 effects	 for	 SEX	 and	 HABITAT	 are	 not	
interpretable	out	of	this	model	anyway,	so	the	difference	is	a	bit	moot.	
	 	

	
	

171	

	

RESULT

summary(agilis.lmer)

Linear mixed model fit by REML. t-tests use Satterthwaite's method
['lmerModLmerTest']
Formula: MASS ~ MONTH + SEX * HABITAT + (1 | YEAR/SITE/TRAP.GRID)
 Data: agilis

REML criterion at convergence: 1019.4

Scaled residuals:
 Min 1Q Median 3Q Max
-2.0543 -0.5810 -0.0472 0.5166 2.6355

Random effects:
 Groups Name Variance Std.Dev.
 TRAP.GRID:(SITE:YEAR) (Intercept) 0.00000 0.0000
 SITE:YEAR (Intercept) 8.02711 2.8332
 YEAR (Intercept) 0.01313 0.1146
 Residual 5.80625 2.4096
Number of obs: 201, groups: TRAP.GRID:(SITE:YEAR), 118; SITE:YEAR,
60; YEAR, 2

Fixed effects:
 Estimate Std. Error df t value Pr(>|t|)
(Intercept) 20.2880 1.7756 52.6347 11.426 7.17e-16 ***
MONTH 0.4235 0.2925 52.3926 1.448 0.153546
SEX -6.0498 0.4890 140.7775 -12.372 < 2e-16 ***
HABITATFRAG 2.5170 0.8728 68.6208 2.884 0.005245 **
SEX:HABITATFRAG -2.3884 0.7073 142.4323 -3.377 0.000945 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation of Fixed Effects:
 (Intr) MONTH SEX HABITA
MONTH -0.938
SEX -0.114 -0.006
HABITATFRAG -0.241 0.002 0.243
SEX:HABITAT 0.079 0.003 -0.691 -0.366

anova(agilis.lmer)
Type III Analysis of Variance Table with Satterthwaite's method
 Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
MONTH 12.18 12.18 1 52.393 2.0970 0.1535457
SEX 2436.29 2436.29 1 142.533 419.5976 < 2.2e-16 ***
HABITAT 48.28 48.28 1 68.621 8.3159 0.0052451 **
SEX:HABITAT 66.21 66.21 1 142.432 11.4032 0.0009454 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

	
	

172	

Generalised linear mixed effect model

A generalised linear mixed effects model is simply an extension of the GLM we looked
at earlier, but allowing for one or more random effects. Here's the code for a
generalised linear mixed effect model (GLMM) using the lmer package. We'll examine
whether there are differences in exoparasite counts (EXO) for agile antechinus using
the same factors and covariates as above.
agilis <- read.table('agilis-morphometrics.csv',header=T,sep=',')
agilis <- na.omit(agilis) # remove missing observations
str(agilis)

Is the response variable a count of whole numbers?
is.integer(agilis$EXO)
	
Load	the	necessary	library:	
library(lme4)
	
agilis.glmer <- glmer(EXO ~ SEX * HABITAT + MONTH + (1 |
YEAR/SITE/TRAP.GRID), family = poisson(link = "log"), REML =
TRUE, agilis)

Look at a plot of the model to check assumptions. Only one plot is generated, the
residuals vs fitted plot. We want to see a roughly evenly distributed cloud of data with
no wedge in it. The following looks all right.

summary(agilis.glmer) # preferable if most of your predictors
are numeric
anova(agilis.glmer) # preferable if most of your predictors
are factorial

Previously we had difficulty extracted P values from a linear mixed effect model (lmer)
(which is a mixed effect variant of an ANOVA-like model (see above), and is a test that
relies on variance). However generalised linear models are not tests of variance, they are
tests of deviance.

	
	

173	

The author of the lme4 package thinks that obtaining P values from mixed effects
GLMS is valid, and they have provided P-values for these GLMM models. This means we
don't have to do the extra step of extracting P-values using another library.

RESULT

summary(agilis.glmer)
Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) ['glmerMod']
 Family: poisson (log)
Formula: EXO ~ SEX * HABITAT + MONTH + (1 | YEAR/SITE/TRAP.GRID)
 Data: agilis

 AIC BIC logLik deviance df.resid
 739.9 766.3 -361.9 723.9 193

Scaled residuals:
 Min 1Q Median 3Q Max
-2.2317 -0.6562 -0.3891 0.3737 2.5118

Random effects:
 Groups Name Variance Std.Dev.
 TRAP.GRID:(SITE:YEAR) (Intercept) 0.2459 0.4959
 SITE:YEAR (Intercept) 1.7666 1.3291
 YEAR (Intercept) 0.0000 0.0000
Number of obs: 201, groups: TRAP.GRID:(SITE:YEAR), 118; SITE:YEAR,
60; YEAR, 2

Fixed effects:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.52102 0.88331 -0.590 0.5553
SEX 0.16237 0.17603 0.922 0.3563
HABITATFRAG 1.25766 0.41083 3.061 0.0022 **
MONTH -0.04061 0.14416 -0.282 0.7782
SEX:HABITATFRAG -0.15848 0.19944 -0.795 0.4268

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation of Fixed Effects:
 (Intr) SEX HABITA MONTH
SEX -0.088
HABITATFRAG -0.278 0.199
MONTH -0.936 -0.003 0.020
SEX:HABITAT 0.077 -0.882 -0.227 0.004

anova(agilis.glmer)
Analysis of Variance Table
 Df Sum Sq Mean Sq F value
SEX 1 0.2194 0.2194 0.2194
HABITAT 1 8.9309 8.9309 8.9309
MONTH 1 0.0783 0.0783 0.0783
SEX:HABITAT 1 0.6237 0.6237 0.6237

	
	

174	

What happens if you try to get P-values from this formula?

agilis.glmer <- glmer(MASS ~ SEX * HABITAT + MONTH + (1 |
YEAR/SITE/TRAP.GRID), family = gaussian(link = "identity"),
REML = TRUE, agilis)

summary(agilis.glmer)
	

	
	
So, what we've done here is used a GLMM to test for a relationship expecting normally
distributed residuals of a model, which is defined using the code family =
gaussian(link = "identity").

This is the same situation as previously, where the lme4 author does not think it is
straightforward to calculate P values for linear models with mixed effects, so that what
might appear to be a sneaky backdoor way of getting P values (running a GLMM with a
normal distribution instead) has also had the P values intentionally omitted.
	

RESULT

summary(agilis.glmer)
Fixed effects:
 Estimate Std. Error t value
(Intercept) 20.2880 1.7756 11.426
SEX -6.0498 0.4890 -12.372
HABITATFRAG 2.5170 0.8728 2.884
MONTH 0.4235 0.2925 1.448
SEX:HABITATFRAG -2.3884 0.7073 -3.377

anova(agilis.glmer)
Analysis of Variance Table
 Df Sum Sq Mean Sq F value
SEX 1 2398.24 2398.24 413.0450
HABITAT 1 18.11 18.11 3.1184
MONTH 1 12.36 12.36 2.1289
SEX:HABITAT 1 66.21 66.21 11.4032

	
	

175	

Applying a Tukey's test to a mixed effect model

Best to use the glht function in library multcomp:
library(multcomp)
	
Make	sure	your	dataset	is	attached!	
attach(your.data)
	
Make sure your 'factor' of interest is actually a factor in R
your.data$your.factor <- as.factor(your.data$your.factor)
	
Apply a Tukey test to the model
fit.glht <- glht(your.lme,linfct=mcp(YOUR.FACTOR="Tukey"))
	
plot(fit.glht) # plot of confidence intervals of differences.
These plots are usually not reported in a paper.
summary(fit.glht) # Tukey's contrasts
cld(fit.glht) # alphabet soup
	
Factorial interactions
If the lme or glmr has an interaction in it you need to include an interaction average:
	
fit.glht <- glht(your.lme,linfct=mcp(YOUR.FACTOR="Tukey",	
interaction_average=TRUE))
	
plot(fit.glht)
summary(fit.glht)
	
Covariate interactions
If the lme or glmr has an interaction in it involving a covariate you need to include an
interaction average:

fit.glht <- glht(your.lme,linfct=mcp(YOUR.FACTOR="Tukey",	
covariate_average=TRUE))
	
plot(fit.glht)
summary(fit.glht)

Try applying a Tukey's test to the agilis linear model for mass we created above. Here is
the code for the model again to save you scrolling up:

agilis.lme <- lmer(MASS ~ MONTH + SEX * HABITAT + (1 |	
YEAR/SITE/TRAP.GRID), REML = TRUE, data = agilis)

Make sure that Month is a factor (use	str(agilis) if unsure) and attach your dataset.
Results you should see are on the next page:	

	
	

176	

	

	 	 	

RESULT

library(multcomp)
agilis$MONTH <- as.factor(agilis$MONTH)
agilis.lme <- lmer(MASS ~ MONTH + SEX * HABITAT + (1 |
YEAR/SITE/TRAP.GRID), REML = TRUE, data = agilis)

attach(agilis)
agilis.glht <- glht(agilis.lme,linfct=mcp(MONTH="Tukey"))

summary(agilis.glht)

 Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

Fit: lmer(formula = MASS ~ MONTH + SEX * HABITAT + (1 |
YEAR/SITE/TRAP.GRID),
 data = agilis, REML = TRUE)

Linear Hypotheses:
 Estimate Std. Error z value Pr(>|z|)
4 - 3 == 0 -2.7063 1.9472 -1.390 0.725
5 - 3 == 0 -1.7484 1.7719 -0.987 0.919
6 - 3 == 0 -1.1944 1.8373 -0.650 0.986
7 - 3 == 0 -0.7579 1.7964 -0.422 0.998
8 - 3 == 0 0.8455 2.0638 0.410 0.998
5 - 4 == 0 0.9578 1.3747 0.697 0.982
6 - 4 == 0 1.5118 1.4573 1.037 0.902
7 - 4 == 0 1.9484 1.4050 1.387 0.727
8 - 4 == 0 3.5518 1.7348 2.047 0.306
6 - 5 == 0 0.5540 1.2136 0.456 0.997
7 - 5 == 0 0.9905 1.1507 0.861 0.954
8 - 5 == 0 2.5939 1.5349 1.690 0.528
7 - 6 == 0 0.4366 1.2489 0.350 0.999
8 - 6 == 0 2.0399 1.6101 1.267 0.796
8 - 7 == 0 1.6034 1.5636 1.025 0.906
(Adjusted p values reported -- single-step method)

cld(agilis.glht) # alphabet soup
 3 4 5 6 7 8
"a" "a" "a" "a" "a" "a"

	
	

177	

	

	
	

	
	

	

	

	 	

	
	

178	

	

Advanced Graphics
Graphically speaking, there's a lot of things you can play around with in R, and once you
know what you are doing R will produce some really beautiful graphics for you. We'll get
into a bit of a taster of some of these features. A lot of this chapter is adapted from R in
Action by Robert I Kabacoff, which is an excellent source for information on how to
produce attractive graphs and figures in R.

par
The 'par' command is used to reset the global settings for figures. We've been using it to
reset plot spaces to 2x2 instead of the usual 1x1 setting. It can be used to reset other
things too, but before you change global settings you should save the default. Otherwise
to restore the default you have to close R and re-open it again.

View the current settings
par()
	
Save the current settings (can be an important step!)
save.par <- par()
	
Restore the saved settings
par(save.par)

To change a figure using the par settings you need to reset par before running the figure.
We'll have a look at this on the next page.

Import today's data:

agilis <- read.table('agilis-
morphometrics.csv',header=T,sep=',')

agilis <- na.omit(agilis)
str(agilis)
	
	

Aggressively restoring graphing defaults
You can use the following code to aggressively restore plotting defaults, but, keep in
mind this will erase all your previous plots as well.

dev.off()

	

	
	

179	

boxplot(MASS~SEX, data = agilis)

	

Set the default line width to 2
par(lwd = 2)
	
boxplot(MASS~SEX, data = agilis)

	

Because the par is now set to line width 2, all plots you create will have line width 2. If
you want to reset this, restore the old par, like this:
par(save.par)

	
	

180	

What can be changed with par?
	
Type ?par to see the list of parameters that can be altered. Here are some of the most
common things you may want to change:

	

Text size & font
cex = Text size . 1=default. 1.5 = 50% larger. 0.5 = 50% smaller, etc.	
family =	 Font family to use.	"serif",	"sans",	"mono"	are most common.	
font = 1=plain. 2=bold. 3=italic. 4=bold italic.	
las = 	 Style of axis labels. 0 = parallel to the axis [default]. 1 = always horizontal.

2 = always perpendicular to the axis. 3 = always vertical.	
	

Point symbols
pch =	 Use the following chart to see what points are available. For example,	

par(pch = 1) will provide hollow circles.	
	

	

Lines
lwd =	 Line width. 1 = default. 2 = 2x thickness. 3 = 3x thickness.
lty =	 Line type. 1 = solid. 2 through 6 are dashed.	
	

	 	

	
	

181	

Margins
If labels or legends are cut-off, you can adjust margins of plotting areas.

boxplot(WBC~YEAR+SEX+HABITAT,data=agilis)

	
boxplot(WBC~YEAR+SEX+HABITAT,data=agilis, las=2)

	

Change	the	bottom	margin	to	6	character	spaces	(making	it	bigger,	allowing	for	more	room).	
The	numbers	are	bottom,	left,	top	and	right.	
par(mar=c(10,4,2,2))
boxplot(WBC~YEAR+SEX+HABITAT,data=agilis, las=2)

	
	

	
	

182	

Colours
col = Default plotting colour. Some functions, such as lines, accept lists of

colours that are 'recycled'	
col = c("grey", "white") Will start with grey, and cycle to white, grey, white,

grey etc.	
col = c("darkgrey", "grey", "white") Will start with dark grey, then produce

grey, and cycle to white, dark grey, grey, white, dark grey etc.	
	
Colours can be denoted using numbers or names or colour codes:
par(save.par) ### some defaults won't reset. This is ok ###
plot(Hb~Ht, data = agilis)

	
par(pch = 16)
par(col = "dimgrey")
par(cex = 1.5)
par(lwd = 2)
plot(Hb~Ht, data = agilis)

	

	
	

183	
	

	
	

184	

	
	

	
	

185	
	

	
	

186	

When is it okay to use colour in a plot?
There is still a tendency in science to avoid using colour in written reports. However, it
is acceptable and sometimes desirable to use colour in a figure for a scientific poster or
a seminar presentation, and colour in reports is becoming more acceptable. The most
sensible thing is to check with your unit co-ordinator or lecturer, and if in doubt, just
stick to greyscale figures for written papers.

Adding directly to plots without using 'par'
Most plots will accept par instructions added onto the end of their code. Each instruction
is separated with a comma and the par command itself isn't required. This allows you
to change features of a graph without changing the defaults.

Restore defaults
par(save.par)

	
plot(MASS~NV, data = agilis)

abline(lm(MASS~NV, data = agilis))

	 	
	

	
	

187	

plot(MASS~NV, data = agilis, pch = 16, col = "grey", cex.axis =
1.25, cex.lab = 1.5)

	
	

	
abline(lm(MASS~NV, data = agilis), lwd = 3)
	

	
	

	

	
	

188	

Setting axes ranges
You can use	xlim	and	ylim to adjust axis lengths.	

xlim=c(xmin, xmax)
ylim=c(ymin, ymax)
	 	
plot(MASS~NV, data = agilis, xlim=c(0, 150), ylim=c(0, 50))
	

	

plot(MASS~NV, data = agilis, xlim=c(50, 120), ylim=c(10, 45))

	
	

189	

Axis	labels	and	titles	
You can usually include instructions like	ylab	and	xlab	to apply labels and titles to a
graph by adding them as code to the end of the plotting code. You can also apply title
and axis labels after already making a graph, but if you do you need to set the graph
labels to "" when you plot it or else you will end up with letters layered on top of one-
another.	
	
plot(MASS~NV, data = agilis, xlab = "", ylab = "")
	

	
	
title(main="main title", sub="sub-title", xlab="x-axis label",
ylab="y-axis label")

	
	

	
	

190	

Graphics: putting it all together
Let's have a go at merging these all into a single graph.

par(lwd=2)
par(cex=2)

plot(MASS~NV, data = agilis, pch = 16, col = "grey", xlab =
"", ylab = "", cex=0.75)

abline(lm(MASS~NV, data = agilis), lwd = 3)

title(main="Agile antechinus", xlab="Nose-vent length (mm)",
ylab="Mass (g)")
	
	

	
	
	
	
	

	
	

191	

Adding axis information
It is possible to add other elements to a graph after building it. A rugplot can be added
to the bottom of a graph.

rug(agilis$NV, col="black", side = 1)

	
	
rug(agilis$MASS, col="black", side = 2)

	

	
	

192	

Play around with the plotting window to add boxplots to the axes of a scatterplot.
Restore defaults you saved earlier
par(save.par)

Tell R to set the plot window to one large and two small plots
par(fig=c(0,0.8,0,0.8), new=TRUE)

Scatterplot
plot(MASS~NV, data = agilis, pch = 16, col = "grey", xlab =
"", ylab = "", cex=0.75)

abline(lm(MASS~NV, data = agilis), lwd = 3)

title(xlab="Nose-vent length (mm)", ylab="Mass (g)")

Boxplot on y-axis
par(fig=c(0,0.8,0.55,1), new=TRUE)
boxplot(agilis$NV, horizontal=TRUE, axes=FALSE)

Boxplot on x-axis
par(fig=c(0.65,1,0,0.8),new=TRUE)
boxplot(agilis$MASS, axes=FALSE)

mtext("Scatterplot of agile antechinus nose-vent length and
mass", side=3, outer=TRUE, line=-3)

	
	

	
	

193	

Reordering categories on the axes for boxplots
Sometimes we need to reorder the labels on a plot because the alphabetical order isn't
sensible. You actually run a bit of code to reorder the factor itself, then re-run the graph.
You can also re-arrange boxplot horizontal axis categories. Try generating a boxplot of
MASS by month:

boxplot(MASS~Month, las = 2, data=agilis)

	

R defaults to arranging the categories alphabetically, which is not especially useful for
months of the year. To get around this we'll need to tell R what order we want the
months to fall into. Enter the variables in the order you want them to plot:

agilis$Month<-factor(agilis$Month, c("Mar", "Apr", "May",
"Jun", "Jul", "Aug"))

boxplot(MASS~Month, las = 2, data=agilis)

	
	 	

	
	

194	

Setting up plots in grids and adding letters
Sometimes we want to present several individual plots as a single plot using letters a, b,
c, d etc. We can set the rows and columns for the plotting window by using par.

You may have to use the 'clear plots' button in your plot window to get some of these plots

to work. Otherwise you might end up plotting on top of old plots.

A normal plot space with one graph
par(mfrow = c(1, 1))

plot(MASS~NV, data = agilis, pch = 16, col = "grey")

A plot space that holds 4 graphs
par(mfrow = c(2, 2))

plot(MASS~NV, data = agilis, pch = 16, col = "black")
plot(MASS~NV, data = agilis, pch = 16, col = "darkgrey")
plot(MASS~NV, data = agilis, pch = 16, col = "red")
plot(MASS~NV, data = agilis, pch = 16, col = "lightgrey")

	
	

195	

A plot space that holds three graphs in a column
par(mfrow = c(3, 1))

plot(MASS~NV, data = agilis, pch = 16, col = "black")
plot(MASS~NV, data = agilis, pch = 16, col = "darkgrey")
plot(MASS~NV, data = agilis, pch = 16, col = "red")

	

	
	

196	

Add letters to a plot
Text can be added inside a plot using this code.

text(X, Y, "what you want to write", cex = 1)

The X and Y co-ordinates are in the units of the axes.

par(mfrow = c(2, 1))

plot(MASS~NV, data = agilis, pch = 16, col = "grey")
text(72, 35, "A", cex = 3)

plot(MASS~NV, data = agilis, pch = 16, col = "black")
text(72, 35, "B", cex = 3)
	
	

	
	

	
	

197	

Text can be added above a plot using this code.
mtext("text", side = 3, adj = 0)

The X and Y co-ordinates are in the units of the axes.
par(mfrow = c(2, 1))

plot(MASS~NV, data = agilis, pch = 16, col = "grey")
mtext("A", side = 3, adj = 0, cex = 2, col = "black")

plot(MASS~NV, data = agilis, pch = 16, col = "black")
mtext("B", side = 3, adj = 0, cex = 2, col = "black")
	

	
	
	

	

	
	

198	

The layout function can be used to generate a more unusual layout
layout(matrix(c(1,1,2,3), 2, 2, byrow = TRUE))

plot(MASS~NV, data = agilis, pch = 16, col = "black")
mtext("a", side = 3, adj = 0, cex = 1.5, col = "black")

plot(MASS~NV, data = agilis, pch = 16, col = "darkgrey")
mtext("b", side = 3, adj = 0, cex = 1.5, col = "black")

plot(MASS~NV, data = agilis, pch = 16, col = "red")
mtext("c", side = 3, adj = 0, cex = 1.5, col = "black")

	

	
	

199	

Density plots
Kernel density plots are an under-used form of plot. Kernal density estimation is a non-
parametric way to estimate the probability density function of a random variable. The
mathematics is beyond the scope of this course, but density plots can be very effective
ways to view a continuous variable. Frist reset your par. We'll creat ea histogram first for
comparison.

par(save.par)

hist(agilis$MASS)
	

	
	
plot(density(agilis$MASS))
	

	

	
	

200	

	
	
The library 'sm' has some nice additions to the density plot function.

install.packages("sm")
library(sm)

sm.density(agilis$MASS, display="se", xlab="")
	

	
	
title("Density plot of agile antechinus mass", xlab="Mass (g)")
	

	
	
abline(v=median(agilis$MASS), lty=2, lwd = 3, col = "grey")

	
	

201	

	
The above plot has a standard error and rugplot added to it. The rugplot is added by
default.

The sm library doesn't have a lot of plotting options built into it, so we need to change
defaults before plotting if we want to alter aspects of the plot.

par(lwd=2)
par(cex=2)

sm.density.compare(agilis$MASS, agilis$SEX, xlab = "Mass (g)")

	

We might not like the colours or lines, so we can change those too.

	
	

202	

	

sm.density.compare(agilis$MASS, agilis$SEX, xlab = "Mass
(g)",col=c("grey","black"),lty=c(1,1))

	

In the above example we would need to state in the figure caption that grey = females
and black = males.

	
	

203	

Using ggplot2

The ggplot2 library works slightly differently to other plotting syntaxes in R. Instead
of adding commands with a bracket, ggplot2 adds commands using a plus (+) and
including the new command with a bracket for any specific things you decide you want
to set. Most of the following plots have been saved with a width of 400 pixels and a
height of 400 pixels.

install.packages("ggplot2")
library(ggplot2)

The basic plots you are likely to need have a similar structure for data, but the defining
difference is the geometric 'add-on'. ggplot2 works by attaching these 'add-on'
components to a piece of basic code.

ggplot2 scatterplot
ggplot(dataset, aes(x=xvar, y=yvar)) + geom_point()
	
ggplot2 boxplot
ggplot(dataset, aes(x=xvar, y=yvar)) + geom_boxplot()
	
ggplot2 geometric dotplot
ggplot(dataset, aes(x=xvar, y=yvar)) + geom_dotplot()
	
ggplot2 violin plot
ggplot(dataset, aes(x=xvar, y=yvar)) + geom_violin()
	
ggplot2 density plot
ggplot(dataset, aes(x=xvar, y=yvar)) + geom_density()
	
	

	
	

204	

Basic scatterplot in ggplot2
ggplot(dataset, aes(x=xvar, y=yvar)) + geom_point()

ggplot(agilis, aes(y=MASS, x=NV)) + geom_point()

	
Use hollow circles
ggplot(agilis, aes(y=MASS, x=NV)) + geom_point(shape=1)

	
	 	

	
	

205	

Add line of best fit
ggplot(agilis, aes(y=MASS, x=NV)) + geom_point(shape=1)
+ geom_smooth(method=lm, se=FALSE, col = "black")

	
	

	
Add thick line of best fit
ggplot(agilis, aes(y=MASS, x=NV)) + geom_point(shape=1)
+ geom_smooth(method=lm, se=FALSE, col = "black", lwd = 2)	
	

	

	

	
	

206	

Add standard error (68.2%) confidence intervals
ggplot(agilis, aes(y=MASS, x=NV)) + geom_point(shape=1)
+ geom_smooth(method=lm, col = "black")	
	

	
	
Wrap the scatterplot by SEX (MF)
ggplot(agilis, aes(y=MASS, x=NV)) + geom_point(shape=1) +
geom_smooth(method=lm, col = "black") + facet_wrap(~MF)	

	
	 	

	
	

207	

Wrap the scatterplot by SEX and HABITAT
ggplot(agilis, aes(y=MASS, x=NV)) + geom_point(shape=1) +
geom_smooth(method=lm, col = "black")
+ facet_wrap(HABITAT~MF)	
	

	
	
	 	

	
	

208	

Use a loess smoothed line instead of a straight line
(appropriate for non-parametric correlations)
ggplot(agilis, aes(y=MASS, x=NV)) + geom_point(shape=1)
+ geom_smooth(method=loess, col = "black")	

Incidentally, this can be a good way to identify data-entry errors. The antechinus with a
Nose-vent length of <60 mm is implausible for an adult. Something odd has happened
there, and the data-point should probably be removed.

Wrap the scatterplot by SEX (MF) and use a loess smoother
ggplot(agilis, aes(y=MASS, x=NV)) + geom_point(shape=1) +
geom_smooth(method=loess, col = "black") + facet_wrap(~MF)	

	
	

209	

Split scatterplot point shapes by SEX on the same plot
ggplot(agilis, aes(y=MASS, x=NV, shape = MF)) + geom_point()

Split scatterplot by SEX on the same plot & change the x and y labels
ggplot(agilis, aes(y=MASS, x=NV, shape = MF, col = MF)) +
geom_point(size=3) + geom_smooth(method=lm, col = "red") +
xlab("Nose-vent length (mm)") + ylab("Mass (g)")

	
	
	
	
	

	
	

210	

Remove background colour
ggplot(agilis, aes(y=MASS, x=NV)) + geom_point(shape=1) +
geom_smooth(method=lm, se=FALSE, col = "black")+ theme_bw()

	
	
Remove background colour and grid
ggplot(agilis, aes(y=MASS, x=NV)) + geom_point(shape=1) +
geom_smooth(method=lm, se=FALSE, col = "black") + theme_bw() +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank())

	
	
	

	
	

211	

Basic boxplot in ggplot2

Change month to a factor
agilis$MONTH <- as.factor(agilis$MONTH)

ggplot(agilis, aes(y=RBC, x=MONTH)) + geom_boxplot()

	 	

	
	

212	

Add x and y labels & remove grey background
ggplot(agilis, aes(y=RBC,x=MONTH)) + geom_boxplot() +
xlab("Month") + ylab("Red blood cell count (cells/L)") +
theme_bw()

Wrap by habitat (continuous or fragmented)
ggplot(agilis, aes(y=RBC,x=MONTH)) + geom_boxplot() +
facet_wrap(~HABITAT) + xlab("Month") + ylab("Red blood cell
count (cells/L)") + theme_bw()

	
	 	

	
	

213	

Wrap by habitat (continuous or fragmented) and sex
ggplot(agilis, aes(y=RBC,x=MONTH)) + geom_boxplot() +
facet_wrap(MF~HABITAT) + xlab("Month") + ylab("Red blood cell
count (cells/L)") + theme_bw()

	 	

	
	

214	

With colour

ggplot(agilis, aes(y=RBC,x=YEAR, fill=MF)) + geom_boxplot() +
facet_wrap(MF~HABITAT) + xlab("Year") + ylab("Red blood cell
count (cells/L)") + theme_bw()
	

	

ggplot(agilis, aes(y=RBC,x=YEAR, fill=MF)) + geom_boxplot() +
facet_wrap(MF~HABITAT) + xlab("Year") + ylab("Red blood cell
count (cells/L)") + theme_bw() + scale_fill_brewer(palette =
"Blues")
	

	 	

	
	

215	

Creating	a	confidence	interval	calculated	by	boxplot.stats.	This	is	effectively	turning	the	95%	
'notches'	from	a	boxplot	to	shaded	bars	instead.	
	
Create	a	function:	
f <- function(x) {
 ans <- boxplot.stats(x)
 data.frame(ymin = ans$conf[1], ymax = ans$conf[2])
}

Create	the	plot	
ggplot(agilis, aes(y=RBC,x=MF)) + geom_boxplot() +
 stat_summary(fun.data = f, geom = "linerange", colour =
"skyblue", size = 5)
	

	
	
	 	

	
	

216	

Same	as	above,	except	that	the	95%	CI	for	the	meadian	is	a	transparent	blue	bar	the	whole	
width	of	the	box.	
	
Create	a	function:	
f <- function(x) {
 ans <- boxplot.stats(x)
 data.frame(ymin = ans$conf[1], ymax = ans$conf[2])
}

Create	the	plot	
ggplot(agilis, aes(y=RBC,x=MF)) +	geom_boxplot(width	=	0.8)	+	
stat_summary(fun.data	=	f,	geom	=	"crossbar",	colour	=	NA,	fill	=	"skyblue",	width	=	0.8,	
alpha	=	0.5)	
	

	

	
	

217	

Basic violin plot in ggplot2
	
ggplot(dataset, aes(x=xvar, y=yvar)) + geom_violin()

ggplot(agilis, aes(y=RBC, x=HABITAT)) + geom_dotplot()
	

	
	
Remove trim, add colour and very simple boxplots

ggplot(agilis, aes(y=RBC, x=HABITAT)) +
geom_violin(trim=FALSE, fill='#A4A4A4', color="darkred",
width=0.9) + geom_boxplot(width=0.1) + theme_minimal()
	

	
	 	

	
	

218	

Same as above, but wrap by SEX

ggplot(agilis, aes(y=RBC, x=HABITAT)) +
geom_violin(trim=FALSE, fill='#A4A4A4', color="darkred",
width=0.9) + geom_boxplot(width=0.1) + theme_minimal()+
facet_wrap(~MF)
	

	

ggplot(agilis, aes(y=RBC, x=HABITAT, fill=MF)) +
geom_violin(trim=FALSE, width=0.9) + geom_boxplot(width=0.1,
fill="white") + theme_minimal() + facet_wrap(~MF) +
scale_fill_brewer(palette = "Blues")

	 	

	
	

219	

Basic kernal density plots in ggplot2
Grouped by habitat (fragment or continuous; indicated by colour). The	alpha=0.5 is
used to set transparency.	
	
ggplot(agilis, aes(x= MASS)) + geom_density()
	

	
	
Same as above, but split by HABITAT
ggplot(agilis, aes(x= MASS, group=HABITAT)) + geom_density()

	
	

220	

Same as above, but add colours with 50% transparency, and x label

ggplot(agilis, aes(x= MASS, group=HABITAT)) +
geom_density(aes(fill = HABITAT), alpha = 0.5) + xlab("Mass
(g)")
	

	
	

	
	

221	

Same as above, but wrapped by sex and habitat, with minimal theme

ggplot(agilis, aes(x= MASS, group=HABITAT)) +
geom_density(aes(fill = HABITAT), alpha = 1.0) + xlab("Mass
(g)") + facet_wrap(MF~HABITAT) + theme_minimal()
	

	
	
	

	
	

222	

Grouped by SEX, HABITAT and MONTH
ggplot(agilis, aes(x= MASS, group=MF)) + geom_density(aes(fill
= MF), alpha = 0.75) + xlab("Mass (g)") +
facet_wrap(MONTH~HABITAT) + theme_minimal()
	

	
	 	

	
	

223	

Saving figures to files

Often a journal will ask you to save files using a high resolution size or you may need to
save a very large figure so that you can scale it up to look nice on a poster. There are two
types of image file that you can choose from.

Bitmap images are made up of pixels. A bitmap image will look pixellated or fuzzy if it
is resized too large. A tiff, bmp or jpeg will store as a bitmapped file.

Vector images are made up of equations and information that draws lines. A vector image
can be scaled up to any size. A PDF, EPS or PS file will store as a vector.

Sometimes we want to save directly to a PDF or an image file. First make sure to set your
working directory to where you want the file to save to. In R Studio this will be Session
> Set Workinging Directory > Choose directory

To save an image to a pdf

pdf(file="FILENAME.pdf", width = X, height = X, ...)

Height and width default to inches. Use ?pdf and you'll find lots of ways to change this,
as well as changing font sets etc.

Insert plotting code now: the code below is an example one
plot(MASS~NV, data = agilis)
	
Run	to	reset	everything	when	done.	
dev.off()

You won't see anything happen, but a file called "FILENAME.pdf" will appear in the
working directory and will contain your graph. You can change the settings you use to
make it look 'right'. Try starting with height=7, width=7, and then change things like cex,
cex.axis, cex.lab in the plotting code. Of course, this is journal specific, many
journals like their plots exactly one or two columns wide (in which case, check what the
journal's column measures are in inches).
	

	
	

224	

To save an image to a TIFF, JPEG or BMP

Same for TIFFs, JPEGs, BMPs, etc (see ?tiff or ?jpeg for links to help file):

Set your working directory: Session > Set Working Directory > Choose directory

tiff(file="FILENAME.tiff", width = X, height = X, units = px,
...)

Width and height default to pixels now, but this can be changed with the units
parameter and setting units = in (inches), cm or mm

If you look at ?tiff, you can also find settings like compression, font type, etc.

Insert plotting code here
plot(MASS~NV, data = agilis)

Run to reset everything to deault.
dev.off()

As before, you won't see anything happen, but your file will appear in the working
directory.

EXAMPLE PDF
pdf(file="TEST1.pdf", width = 7, height = 7)
plot(MASS~NV, data = agilis)	
dev.off()

EXAMPLE TIFF
tiff(file="TEST1.tiff", width = 400, height = 400)
plot(MASS~NV, data = agilis)	
dev.off()

EXAMPLE TIFF WITH COMPRESSIONS
tiff(file="TEST2.tiff", width = 400, height = 400, compression
= "lzw")
plot(MASS~NV, data = agilis)	
dev.off()
	

	
	

225	

Diversity Indices
Library 'adiv' has a number of useful diversity indices that can be applied to species
counts.

install.packages("adiv")
library(adiv)

import the macnally.csv dataset
birds <- read.table('macnally.csv', header=T, sep=',')

Mac Nally recorded bird abundances (V1GST to V102KING) at sites divided into six forest
types (Mixed, Gippsland Mallee, Montane Forest, Foothills Woodland, Box-Ironbark, River
Red Gum). We'll use the bird counts to generate diversity indices. There are a couple
steps to this:

1) Generate a matrix of the counts
2) Apply the diversity function(s) to the matrix

We generate a matrix by nominating the columns we want to include. The easiest way
to do this is pull out the columns by number. We want to avoid include the first two
columns, because these are categorical data and the diversity function will refuse to work
if you try to give it non-numerical data.

generate a matrix of bird counts from column 3 to column 13
just as an example
birds.matrix <- as.matrix(birds[,3:13])
birds.matrix

generate a matrix of all bird counts
from column 3 to 104 (note that the species names are coded)
birds.matrix <- as.matrix(birds[,3:13])
birds.matrix # look at matrix

We can generate diversity indices of all possible options, but this is not very useful, as
we can't easily test these against variables in the original dataset.

diversities <- speciesdiv(birds.matrix) # all diversity indices
diversities # look at indices

Instead we'll just pull out a few of the more widely used indices.

birds$RICHNESS <- speciesdiv(birds.matrix, method = "richness")
birds$GINISIMPSON <- speciesdiv(birds.matrix, method = "GiniSimpson")
birds$SIMPSON <- speciesdiv(birds.matrix, method = "Simpson")
birds$SHANNON <- speciesdiv(birds.matrix, method = "Shannon")

	
	

226	

And we'll extract a commonly used evenness index too, the Hills Numbers.

birds$EVENNESS <- eveparam(birds.matrix, method = "hill")

We wouldn't typically use all of these indices as responses, because several of them will
tend to correlate anyway. If in doubt, GiniSimpson (which accounts for both diversity and
abundance) and Hill's evenness is a reasonable suite to look at. We'll check these as
responses against Habitat.

richness.aov <- aov(RICHNESS~HABITAT, data = birds)
ginisimpson.aov <- aov(GINISIMPSON~HABITAT, data = birds)
evenness.aov <- aov(EVENNESS~HABITAT, data = birds)

Because we have three or more levels in a factor (i.e. Habitat is made up of three or more
levels), we'd need to use a post hoc test such as a Tukey's to tease apart what is going
on here, however, that is a relatively simple next step. We also might need to consider
using a linear mixed effects model instead of an ANOVA to control for pseuoreplication
if we have multiple samples from a single site, but that is covered under the linear mixed
effects section.

	

RESULT

> summary(richness.aov)
 Df Sum Sq Mean Sq F value Pr(>F)
HABITAT 5 126.98 25.397 11.46 2.54e-06 ***
Residuals 31 68.69 2.216

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> summary(ginisimpson.aov)
 Df Sum Sq Mean Sq F value Pr(>F)
HABITAT 5 0.07178 0.014356 2.454 0.0552 .
Residuals 31 0.18138 0.005851

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> summary(evenness.aov)
 Df Sum Sq Mean Sq F value Pr(>F)
HABITAT 5 0.1893 0.03786 4.553 0.00315 **
Residuals 31 0.2578 0.00831

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

	
	

227	

Advanced Statistics
The following material covers a number of slightly more sophisticated statistical tests
that you may require.

Principal Components Analysis
Multivariate datasets can have a large number of either predictor or response variables
(or both). Traditionally, one way to analyse large multivariate datasets is to use principal
components analysis (PCA). PCA is not as widely used as it once was, but it is still a useful
function to be aware of.

Useful things about a PCA
Allows for variable reduction: if you have too many predictor variables (i.e. your ANOVA
models will be overparametised) you can use PCA to create axes that represent gradients
in the dataset
Allows multiple response variables to be analysed as a whole: this function is similar to
the application of a test like a MANOVA, except that more information can be extracted
from a PCA than from a MANOVA sometimes
Allows correlating predictor variables to be analysed together: including two correlating
variables in a PCA will generate an axis that accounts for both of them.

The two native functions in R are prcomp and princomp, which differ in the mathematics
used to calculate them. Generally, prcomp is preferred over princomp. However, here
we're going to start with princomp and then provide prcomp for comparison.

princomp

Load libraries
library(vegan)
library(MASS)

Load data
agilis <- read.table('agilis-abundance.csv',header=T,sep=',')

str(agilis)	

Generate a PCA using total area at basal height, median area at basal height, stumps,
shrub count, shrub species and percentage of trees that were not Eucalyptus (measured
in 20x20 m quadrats at study sites)

veg.pca <- princomp(~ ABH.m2 + median.ABH + STUMPS + SHRUB.COUNT
+ SHRUB.SPECIES + pcNONEUC, cor=T, data=agilis)

	
	

228	

Plot the first two PCA axes
biplot(veg.pca) # just picks the first two axes

The first two axes of the PCA have been plotted. The black numbers are site numbers,
and their relative position tells you something about how similar sites are. The red arrows
can be thought of as strength of contributions by the variables, and they are also
indicators of correlation. median.ABH is pointing in the opposite direction to
pcNONEUC. This means that these two variables are negatively correlated. ABHm2 and
SHRUB.COUNT are pointing in the same direction. They are positively correlated.

	
Figure 1. Biplot of a principal components analysis based on vegetation data collected at 120

sites in South Gippsland.

	
	

229	

Plot an ordiplot with the type set to "none" (should be blank)
ordihull(ordiplot(veg.pca, type="none"), agilis$HABITAT)
	
Add labels to the ordiplot
text(veg.pca$scores, labels=agilis$HABITAT,
col=as.numeric(agilis$HABITAT))

	
Figure 1. Ordiplot of the first two PCA axes. Forest fragment sites are in black (F) and continuous
control sites are in red (C). There seems to be a reasonable amount of overlap between the two
types of sites.

A PCA generates one axis per variable that was entered into it. There were six variables
so we expect six axes. The first axis will explain the most variation, the second axis will
explain the next most variation and so on. If we want to make use of the axes, we need
to move them back to our original dataset.

Try these lines and look to see what happens:

ordihull(ordiplot(veg.pca, type = "none", choices=c(1,3)),
agilis$HABITAT)

text(veg.pca$scores[,1],veg.pca$scores[,3],
labels=agilis$HABITAT, col=as.numeric(agilis$HABITAT))
		
	 	

	
	

230	

	

What if you want to plot points instead of labels or letters? Have a go at this:
ordihull(ordiplot(veg.pca,type="none"),agilis$HABITAT)

points(veg.pca$scores, col=as.numeric(agilis$HABITAT), pch=16)

	 	

	
	

231	

	
	
You can move the scores to the dataset also. The scores will be slotted in next to each
observation.

agilis$pca.1 <- veg.pca$scores[,1]
agilis$pca.2 <- veg.pca$scores[,2]
agilis$pca.3 <- veg.pca$scores[,3]
agilis$pca.4 <- veg.pca$scores[,4]
agilis$pca.5 <- veg.pca$scores[,5]
agilis$pca.6 <- veg.pca$scores[,6]

Now check how the agilis data has changed.
str(agilis)
head(agilis)
View(agilis)

Classically, the scores are all assumed to be independent, and as such they can be
analysed in a linear model like an ANOVA or ANCOVA without breaking assumptions.
Have a go at the following, and interpret them. What do you think is probably the
hypothesis and null hypothesis of the following tests? (sqrtAGILIS is a measure of
agile antechinus abundance at sites.)

summary(aov(pca.1~HABITAT, data=agilis))

summary(aov(sqrtAGILIS~pca.1*pca.2*pca.3, data=agilis))
	 	
summary(aov(sqrtAGILIS~pca.1+pca.2+pca.3, data=agilis))	
	
I've stated 'classically' above, because there is increasingly some debate about how
independent pca scores really are. However, keep in mind that the reason we care about
independence is that we don't want predictors to be explaining the same variance in a
model. If you were concerned, you could always use cor to check the correlations among
your pca axes and remove an axes if you find correlations > 0.6. Note that the
'independence' being discussed here is not the same as sample or replicate
independence, which required for all statistical tests and is a function of good
experimental design.	
	
	 	

	
	

232	

	

	

The first ANOVA suggests that PCA1 is significantly associating with HABITAT (P = 0.046).
The second ANOVA suggests that PCA2 is a significant predictor of agile antechinus
abundance (sqrtAGILIS) (P = 0.006). The third ANOVA is examining the same relationship,
but the non-significant interaction terms have been removed to simplify the model. PCA2
is still significantly associating with agile antechinus abundances (P=0.007).

RESULT

> summary(aov(pca.1~HABITAT, data=agilis))
 Df Sum Sq Mean Sq F value Pr(>F)
HABITAT 1 7.45 7.451 4.063 0.0461 *
Residuals 118 216.40 1.834

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> summary(aov(sqrtAGILIS~pca.1*pca.2*pca.3, data=agilis))
 Df Sum Sq Mean Sq F value Pr(>F)
pca.1 1 0.006 0.0058 0.102 0.75025
pca.2 1 0.442 0.4421 7.727 0.00638 **
pca.3 1 0.145 0.1453 2.540 0.11384
pca.1:pca.2 1 0.014 0.0144 0.252 0.61659
pca.1:pca.3 1 0.163 0.1628 2.846 0.09438 .
pca.2:pca.3 1 0.042 0.0420 0.735 0.39321
pca.1:pca.2:pca.3 1 0.098 0.0978 1.709 0.19381
Residuals 112 6.408 0.0572

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> summary(aov(sqrtAGILIS~pca.1+pca.2+pca.3, data=agilis))
 Df Sum Sq Mean Sq F value Pr(>F)
pca.1 1 0.006 0.0058 0.100 0.75182
pca.2 1 0.442 0.4421 7.625 0.00669 **
pca.3 1 0.145 0.1453 2.506 0.11611
Residuals 116 6.725 0.0580

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

	
	

233	

PCA Loadings
veg.pca$loading shows the contribution of each variable to each axis. You can read
the values as if they were correlation coefficients (i.e. the range from -1 to +1 where
numbers that are further from zero have a strong association with an axes).	
	

	

Q. What is the strongest positive contributor to axis 1?

ABH.m2
Area at base height of trees has a strong positive 0.560 contribution to PCA1.

Q. What is the strongest negative contributor to axis 2?

SHRUB.SPECIES
Shrub species richness has a strong negative -0.602 contribution to PCA2.

Q. Which variable is not contributing to axis 4?

ABH.m2
Area at base height of trees is missing from PCA4 (i.e. it's contribution to this axes is
zero).

	

RESULT

> veg.pca$loading

Loadings:
 Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6
ABH.m2 0.560 -0.165 0.302 -0.149 -0.739
median.ABH 0.156 0.471 -0.797 0.154 -0.123 -0.282
STUMPS 0.489 0.240 0.186 0.651 0.353 0.347
SHRUB.COUNT 0.473 -0.245 -0.300 -0.556 0.540 0.159
SHRUB.SPECIES 0.276 -0.602 -0.296 0.217 -0.556 0.343
pcNONEUC -0.353 -0.520 -0.249 0.441 0.487 -0.334

 Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6
SS loadings 1.000 1.000 1.000 1.000 1.000 1.000
Proportion Var 0.167 0.167 0.167 0.167 0.167 0.167
Cumulative Var 0.167 0.333 0.500 0.667 0.833 1.000

	
	

234	

Cumulative summing
(cumsum(veg.pca$sd^2))/6 # where 6 = number of axes	
	

	

This is the cumulative amount of variation explained by the axes. There are a number of
axes equal to the variables that were included. However, we won't want to keep all the
axes for analysis because there is a diminishing return on how much variation in the
overall pattern of data is being explained by each axis.

Eigenvalues (keep axis if Eigenvalues > 1)
veg.pca$sd^2
	

	

You can read the Eigenvalues as being something like percentages of variation in the
data explained by the axes, except that they are written as proportions, and the total
variation available to explain is equal to the number of components x 100. I terms of the
practical implantation, this use of Eigenvalues relates to one purpose for PCAs: variable
reduction. We started with six environmental variables, but, we have concerns that some
of these variables are co-correlating, and we would like to reduce these variables down
to a smaller number (maybe 2-3) synthetic variables that capture a biological gradient or
trend. To decide which axes to keep, we check the Eigenvalues. Any axes with an
Eigenvalue >1 is explaining more than 100% of the variable we would expect it to
explain, all things being equal. That is, it is explaining more than it's 'fair share' of
variation. So, a very straightforward rule is to keep any axes with Eigenvalue >1 in your
subsequent analyses, and discard the rest of the eaxes.

RESULT

 Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6
0.3109087 0.5353282 0.6896440 0.8094749 0.9143534 1.0000000

RESULT

 Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6
1.8654520 1.3465174 0.9258945 0.7189857 0.6292710 0.5138793

	
	

235	

plot(veg.pca) # plots the Eigenvalues
	

	
Figure 1. Plot of the Eigenvalues for the PCA.

Another way to view Eigenvalues is to plot them directly from the pca.

Proportion of variance explained by axes
summary(veg.pca)
	

	

A note on 'construct validity'
In	psychology,	PCAs	are	often	used	to	check	whether	questions	on	a	survey	are	contributing	
in	a	balanced	way	to	a	'construct',	that	is	an	underlying	psychological	trait	(such	as	empathy,	
or	anxiety).	This	means	that	there	is	quite	a	bit	of	advice	online	about	how	to	asses	construct	
validity	 in	 a	PCA,	 and	when	 to	 keep	or	 remove	variables.	Because	we	 tend	 to	use	PCA	 in	
biological	sciences	to	look	at	actual,	real	living	systems,	'construct	validity'	is	less	of	a	concern,	
and	 in	 actuality,	 some	 of	 the	 things	 that	 would	 be	 problematic	 in	 psychology	 (such	 as	 a	
variable	contributing	to	just	one	principal	component	axes),	would	be	of	genuine	biological	
interest	in	a	PCA	derived	from	environmental	gradients,	morphology	or	genetic	expression.	
This	means	that	rather	than	remove	variables	that	are	not	forming	part	of	a	coherent	pattern,	
we	 tend	 to	 be	 interested	 in	 interrogating	why	 a	 given	 variable	 appears	 to	 be	 (relatively)	
independent	 of	 the	 other	 biological	 variables	 included	 in	 the	 PCA.	 That	 is,	 it	 is	 generally	
preferable	in	biology	to	leave	all	variables	in	the	PCA	that	you	included	in	the	first	place,	and	
treat	 these	 as	 a	 sort	 of	 a	 priori	 inclusion	 in	 a	 model,	 that	 then	 can	 be	 examined	 using	
significance	tests.	
	
	 	

RESULT

Importance of components:
 Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6
Standard deviation 1.3658155 1.1603954 0.9622341 0.8479303 0.7932661 0.71685376
Proportion of Variance 0.3109087 0.2244196 0.1543158 0.1198310 0.1048785 0.08564655
Cumulative Proportion 0.3109087 0.5353282 0.6896440 0.8094749 0.9143534 1.00000000

	
	

236	

Analysis
We're going to use these axes as explanatory variables in a regression analysis of agile
antechinus abundances. The abundances have already been transformed for normality
(sqrtAGILIS) so you should be able to simply apply the regression analysis without
needing to further transform the data.

The PCA axes are independent and normally distributed by default
Normally, the rule of thumb is to retain all axes that explain more than their 'fair share'
of variance, which will roughly equate with an Eigenvalue of > 1. I've retained axis 3 as
well, because although it has an Eigenvalue of < 1, it isn't much below 1 and it is probably
worth looking at, even if just quickly (i.e axes 3 might not make it into a final report, but
my preference is just to check Eigenvalues >0.9 just to see if there is anything of interest
there).

abundance.lm <- lm(sqrtAGILIS ~ pca.1* pca.2 * pca.3,
data = agilis)

summary(abundance.lm)	
	

	
	
No significant interactions. Best to remove the interaction terms at this point (unless they
were a part of you original hypothesis).	
	

RESULT

> summary(abundance.lm) ## No significant interactions ##

Call:
lm(formula = sqrtAGILIS ~ pca.1 * pca.2 * pca.3, data = agilis)

Residuals:
 Min 1Q Median 3Q Max
-0.45095 -0.15859 -0.03536 0.15458 0.67305

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.393394 0.030317 12.976 <2e-16 ***
pca.1 -0.018010 0.023524 -0.766 0.4455
pca.2 -0.059790 0.035798 -1.670 0.0977 .
pca.3 -0.007091 0.078351 -0.091 0.9281
pca.1:pca.2 -0.008623 0.029305 -0.294 0.7691
pca.1:pca.3 -0.024637 0.025813 -0.954 0.3419
pca.2:pca.3 -0.050280 0.032221 -1.560 0.1215
pca.1:pca.2:pca.3 0.030042 0.022981 1.307 0.1938

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.2392 on 112 degrees of freedom
Multiple R-squared: 0.1244, Adjusted R-squared: 0.06966
F-statistic: 2.273 on 7 and 112 DF, p-value: 0.03349

	
	

237	

abundance.lm <- lm(sqrtAGILIS ~ pca.1 + pca.2 + pca.3,
data = agilis)

summary(abundance.lm)	
	

	

So, this leaves us with a significant intercept (not especially meaningful), and a
significant effect of PCA2 on agile antechinus abundance. The effect size is negative, but
we can plot the relationship to see what is happening.

RESULT

Call:
lm(formula = sqrtAGILIS ~ pca.1 + pca.2 + pca.3, data = agilis)

Residuals:
 Min 1Q Median 3Q Max
-0.49533 -0.16478 -0.02824 0.13692 0.67158

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.365900 0.021980 16.647 < 2e-16 ***
pca.1 -0.005101 0.016093 -0.317 0.75182
pca.2 -0.052306 0.018942 -2.761 0.00669 **
pca.3 -0.036164 0.022843 -1.583 0.11611

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.2408 on 116 degrees of freedom
Multiple R-squared: 0.08106, Adjusted R-squared: 0.05729
F-statistic: 3.411 on 3 and 116 DF, p-value: 0.01991

	
	

238	

plot(sqrtAGILIS~pca.2, data = agilis, pch = 20, col = "grey40",
ylab = "Square root of agile antechinus abundance", xlab = "PCA2
of environmental variables")

abline(lm(sqrtAGILIS~pca.2, data = agilis), col="darkred",
lwd=2)

In order to interpret the result we need to look at the loadings for PCA2.

	

RESULT

> veg.pca$loading

Loadings:
 Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6
ABH.m2 0.560 -0.165 0.302 -0.149 -0.739
median.ABH 0.156 0.471 -0.797 0.154 -0.123 -0.282
STUMPS 0.489 0.240 0.186 0.651 0.353 0.347
SHRUB.COUNT 0.473 -0.245 -0.300 -0.556 0.540 0.159
SHRUB.SPECIES 0.276 -0.602 -0.296 0.217 -0.556 0.343
pcNONEUC -0.353 -0.520 -0.249 0.441 0.487 -0.334

 Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6
SS loadings 1.000 1.000 1.000 1.000 1.000 1.000
Proportion Var 0.167 0.167 0.167 0.167 0.167 0.167
Cumulative Var 0.167 0.333 0.500 0.667 0.833 1.000

	
	

239	

	
	
PCA2	 has	 an	 overall	 negative	 association	with	 agile	 antechinus	 abundance	 (t	 =	 -2.76,	 P	 =	
0.007).	As	values	of	PCA2	increase,	there	were	declines	in	total	area	at	base	height	of	trees	
(loading	=	-0.165),	shrub	count	in	a	20x20	quadrat	(loading	=	-0.245),	shrub	species	richness	
(loading	=	 -0.602)	and	percentage	of	non-eucalyptus	species	 in	 the	tree	stand	 (loading	=	 -
0.560).	In	contrast	the	median	area	at	base	height	of	trees	(loading	=	+0.471)	and	number	of	
tree	stumps	(loading	=	+0.240)	increased	with	increasing	values	of	PCA2.	This	suggests	that	
agile	antechinus	were	at	the	highest	abundances	in	sites	with	a	large	sum	of	total	tree	areas	
(typical	of	densely	treed	areas),	large	numbers	of	shrubs	that	had	greater	species	diversity,	as	
well	 as	 greater	 overall	 tree	 diversity	 (as	 indexed	 by	 percentage	 of	 trees	 that	 were	 not	
eucalyptus	 species).	Sites	 that	had	a	 large	median	 individual	 tree	area	 (perhaps	 indicating	
stands	 where	 2-3	 large	 trees	 were	 dominating	 a	 given	 area),	 and	 stumps	 (indicative	 of	
disturbance),	tended	to	have	lower	abundances	of	agile	antechinus.	
	
As	stumps	tend	to	be	indicative	of	tree	felling,	and	non-eucalyptus	trees	tends	to	be	the	more	
valuable	timber	(e.g.	blackwoods)	in	the	area	studied,	and	are	also	individually	smaller	trees	
species	that	eucalyptus	on	average,	this	PCA	gradient	may	be	an	index	of	human	disturbance	
and	selective	logging	and	milling	of	commercially	valuable	non-eucalyptus	trees.	
	 	

	
	

240	

Now have a go at these analyses:

veg.pca <- princomp(~ ABH.m2 + median.ABH + STUMPS +
SHRUB.COUNT + SHRUB.SPECIES + TREE.SPECIES + WOODY.DEBRIS +
CANOPY + MIDSTOREY + UNDERSTOREY + GROUNDCOVER + LEAF.LITTER +
pcDEAD + pcNONEUC, cor=T, data=agilis)

Move the scores to the dataset
agilis$pca.1 <- veg.pca$scores[,1]
agilis$pca.2 <- veg.pca$scores[,2]
agilis$pca.3 <- veg.pca$scores[,3]
agilis$pca.4 <- veg.pca$scores[,4]
agilis$pca.5 <- veg.pca$scores[,5]
agilis$pca.6 <- veg.pca$scores[,6]
agilis$pca.7 <- veg.pca$scores[,7]
agilis$pca.8 <- veg.pca$scores[,8]
agilis$pca.9 <- veg.pca$scores[,9]
agilis$pca.10 <- veg.pca$scores[,10]
agilis$pca.11 <- veg.pca$scores[,11]
agilis$pca.12 <- veg.pca$scores[,12]
agilis$pca.13 <- veg.pca$scores[,13]
agilis$pca.14 <- veg.pca$scores[,14]

Try using the PCA axes (you pick how many) as an explanatory variable for agile
antechinus abundance in a regression analysis (lm). You could try examining bush rat
abundances by using sqrtFUSCIPES as a response instead of sqrtAGILIS.

	
	

241	

	
	

prcomp

The function prcomp is generally preferred, as it is considered mathematically more
reliable than princomp. The prcomp function differs only in some minor code
differences.

princomp() prcomp() Description
sdev sdev Standard deviations of the principal components

loadings rotation
Matrix of variable loadings (columns are
eigenvectors)

center center Variable means (means that were subtracted)

scale scale
Variable standard deviations (the scalings applied
to each variable)

scores x
The coordinates of the individual observations on
the principal component

The following is the code necessary to run the same analysis as above, but using prcomp
instead of princomp.

Load libraries
library(vegan)
library(MASS)

agilis <- read.table('agilis-abundance.csv',
header=T, sep=',')

str(agilis)	
veg.pca <- prcomp(~ ABH.m2 + median.ABH + STUMPS + SHRUB.COUNT
+ SHRUB.SPECIES + pcNONEUC, scale=T, data=agilis)
	
biplot(veg.pca) # just picks the first two axes
	
ordihull(ordiplot(veg.pca, type="none"),agilis$HABITAT)
text(veg.pca$x, labels=agilis$HABITAT,
col=as.numeric(agilis$HABITAT))
	
ordihull(ordiplot(veg.pca, type = "none",
choices=c(1,3)),agilis$HABITAT)

text(veg.pca$x[,1],veg.pca$x[,3],
labels=agilis$HABITAT, col=as.numeric(agilis$HABITAT))

ordihull(ordiplot(veg.pca, type="none"), agilis$HABITAT)
points(veg.pca$x, col = as.numeric(agilis$HABITAT), pch = 16)	

	
	

242	

You can move the scores to the dataset also. The scores will be slotted in next to each
observation.

agilis$pca.1 <- veg.pca$x[,1]
agilis$pca.2 <- veg.pca$x[,2]
agilis$pca.3 <- veg.pca$x[,3]
agilis$pca.4 <- veg.pca$x[,4]
agilis$pca.5 <- veg.pca$x[,5]
agilis$pca.6 <- veg.pca$x[,6]

Now check how the agilis data has changed.
str(agilis)
head(agilis)
View(agilis)

veg.pca$rotation # contribution of each variable to each axis
	
plot(veg.pca) # plots the Eigenvalues
	
summary(veg.pca) # summary of the Eigenvalues
	
	

	
	

243	

Comparison of prcomp and princomp
	

		

	

Figure 1. Ordiplot of the first two PCA axes using princomp (ABOVE) and prcomp (BELOW). In this
case, the two methods seem to have generated identicle results.

	 	

	
	

244	

Ordination Plots
A major use of PCA outputs is to graph groups and look for overlaps. This exploratory
approach takes the view that groups with substantial overlaps are more similar in terms
of the underlying axes, whereas groups that are disparate are more distinct. We'll use
forest fragmented and control sites to look at the degree of overlap using our
environmental variables measures at sites.

Further graphing: prcomp (polygons)

veg.pca <- prcomp(~ ABH.m2 + median.ABH + STUMPS + SHRUB.COUNT
+ SHRUB.SPECIES + pcNONEUC, scale=T, data=agilis)

ordiplot(veg.pca,type="n") # blank canvas plot
ordihull(veg.pca, groups=agilis$HABITAT, draw="polygon",
col="grey90", label=F) # Polygons with no labels

text(veg.pca$x,lab=agilis$HABITAT,col="grey", adj =1.5) # Text
added in grey with a slight offset of 1.5 characters

agilis$HABITAT<-as.factor(agilis$HABITAT) # Change habitat to
a factor to get the next step to work

points(veg.pca$x, pch=16,col=as.numeric(agilis$HABITAT)) #
Add points

	

	
	

245	

Further graphing: princomp (polygons)
	

veg.pca <- princomp(~ ABH.m2 + median.ABH + STUMPS +
SHRUB.COUNT + SHRUB.SPECIES + pcNONEUC, cor=T, data=agilis)

ordiplot(veg.pca,type="n") # blank canvas plot
ordihull(veg.pca, groups=agilis$HABITAT, draw="polygon",
col="grey90", label=F) # Polygons with no labels

text(veg.pca$scores,lab=agilis$HABITAT,col="grey", adj =1.5) #
Text added in grey with a slight offset of 1.5 characters

agilis$HABITAT<-as.factor(agilis$HABITAT) # Change habitat to
a factor to get the next step to work

points(veg.pca$scores, pch=16,col=as.numeric(agilis$HABITAT))
Add points
	

	
	

	 	

	
	

246	

Further graphing: prcomp (ovals)

veg.pca <- prcomp(~ ABH.m2 + median.ABH + STUMPS + SHRUB.COUNT
+ SHRUB.SPECIES + pcNONEUC, scale=T, data=agilis)

ordiplot(veg.pca,type="n") # blank canvas plot

ordiellipse(veg.pca, groups=agilis$HABITAT, draw="polygon",
col="grey90", label=F, kind="ehull") # Polygons with no labels

text(veg.pca$x,lab=agilis$HABITAT,col="grey", adj =1.5) # Text
added in grey with a slight offset of 1.5 characters

agilis$HABITAT<-as.factor(agilis$HABITAT) # Change habitat to
a factor to get the next step to work

points(veg.pca$x, pch=16,col=as.numeric(agilis$HABITAT)) #
Add points

	

	
	

247	

Further graphing: princomp (ovals)
	

veg.pca <- princomp(~ ABH.m2 + median.ABH + STUMPS +
SHRUB.COUNT + SHRUB.SPECIES + pcNONEUC, cor=T, data=agilis)

ordiplot(veg.pca,type="n") # blank canvas plot

ordiellipse(veg.pca, groups=agilis$HABITAT, draw="polygon",
col="grey90", label=F, kind="ehull") # Polygons with no labels

text(veg.pca$scores,lab=agilis$HABITAT,col="grey", adj =1.5) #
Text added in grey with a slight offset of 1.5 characters

agilis$HABITAT<-as.factor(agilis$HABITAT) # Change habitat to
a factor to get the next step to work

points(veg.pca$scores, pch=16,col=as.numeric(agilis$HABITAT))
Add points

	

	
	
	

	
	

248	

Further graphing: prcomp (isobars)

veg.pca <- prcomp(~ ABH.m2 + median.ABH + STUMPS + SHRUB.COUNT
+ SHRUB.SPECIES + pcNONEUC, scale=T, data=agilis)

ordisurf(veg.pca,agilis$sqrtAGILIS, main="",col="forestgreen")

agilis$HABITAT<-as.factor(agilis$HABITAT) # Change habitat to
a factor to get the next step to work

points(veg.pca$x, pch=16,col=as.numeric(agilis$HABITAT)) #
Add points

Agile antechinus abundance (sqrtAGILIS) plotted as a set of isobars over the first and
second axes for the PCA. The peak abundhance is 0.44 sqrt captures per trap, which is
highest in the cluster of continuous (black) forest sites to the bottom left.

	

	
	

249	

Further graphing: princomp (isobars)
	

veg.pca <- princomp(~ ABH.m2 + median.ABH + STUMPS +
SHRUB.COUNT + SHRUB.SPECIES + pcNONEUC, cor=T, data=agilis)

ordisurf(veg.pca, agilis$sqrtAGILIS, main="",
col="forestgreen")

agilis$HABITAT<-as.factor(agilis$HABITAT) # Change habitat to
a factor to get the next step to work

points(veg.pca$scores, pch=16,col=as.numeric(agilis$HABITAT))
Add points

	

	
	

250	

Note that the high abundance seems to correspond to a greater percentage of non-
eucalyptus tree species and greater shrub diversity.

	
biplot(veg.pca, col=c("grey90","red"))

	

	
	

251	

More fancy graphing for PCAs

Install and load libraries (ggbiplot is currently in beta so it has to be downloaded as a
beta)
install.pacakges("ggplot2")
library(ggplot2)
install.packages("devtools")
library(devtools)
install_github('vqv/ggbiplot')
library(ggbiplot)

Load data
agilis <- read.table('agilis-abundance.csv',
header=T,sep=',')

str(agilis)	

Construct a PCA
veg.pca <- prcomp(~ABH.m2 + median.ABH + STUMPS + SHRUB.COUNT +
SHRUB.SPECIES+pcNONEUC,scale=T,data=agilis)

Set up your response category as a separate factor for ease of coding
HABITAT<- agilis$HABITAT

Create a basic plot for axis 1 and 2 based on ggplot
g<-ggbiplot(veg.pca,obs.scale = 1,var.scale =
1,groups=HABITAT,ellipse = TRUE)

Have a look at it
print(g)

Add some modifications to the plot
g<-g+scale_color_discrete(name = '')+theme_bw()

Have a look at the new plot
print(g)
	
	 	

	
	

252	

PCA plot, version one…

	

PCA plot, version two with modifications…

	

	
	

253	

	

MANOVA
A MANOVA (multivariate analysis of variance) is typically reported alongside PCA to
provide P values. It is a test of multiple numeric (ideally continuous) responses against a
single categorical predictor. The assumptions of the MANOVA should (strictly speaking)
be met for the PCA to be valid too, and it is certainly worth checking them if you are
running a PCA, regardless of whether you plan to use a MANOVA.

ASSUMPTIONS OF MANOVA (& PCA too, really)
(1) Observations must be independent
(2) Univariate assumptions of ANOVAs are met
 - Normal distributions of dependent variables within groups
 - Equal variances of dependent variables within groups
(3) Multivariate normality is met
(4) Multivariate equal variances are met

	
To test that the univariate assumptions of ANOVAs are met, the most straightforward
thing to do is generate a set of univariate ANOVAs and check the diagnostic plots for
each MANOA. We will use the same environmental data we use above and generate
diagnostic plots for all relationships of
	
	
agilis <- read.table('agilis-abundance.csv',
header=T, sep=',')

str(agilis)
	

1) Univariate assumptions of ANOVAs are met
	
par(mfrow=c(6,4))
plot(aov(ABH.m2~HABITAT, data = agilis))
plot(aov(median.ABH~HABITAT, data = agilis))
plot(aov(STUMPS~HABITAT, data = agilis))
plot(aov(SHRUB.COUNT~HABITAT, data = agilis))
plot(aov(SHRUB.SPECIES~HABITAT, data = agilis))
plot(aov(pcNONEUC~HABITAT, data = agilis))
	
The diagnostic plots are shown over-page. Arguably, some of the QQ plots are indicating
non-normality of residuals, and the residuals-vs-fitted do look 'wedgy' in places,
suggesting that variances are not equal. If we were publishing this data, we would
consider transforming the responses. However, for simplicity of explanation, I'm just
going to continue with the data as is. Note that I'm doing this to make the demonstration
easier: the following plots really don't look great.	

	
	

254	

	
	 	

	
	

255	

2) Multivariate normality is met
	
To check multivariate normality we need to set up a numeric matrix of responses.	
	
attach(agilis)

y <- cbind(ABH.m2, median.ABH, STUMPS, SHRUB.COUNT, SHRUB.SPECIES,
pcNONEUC)
	
We will then use the mvn in library MVN to check multivariate normality. This is read in
the same way as a standard univariate Shapiro-Wilks test, where P < 0.05 indicates a
departure from normality. Other multivariate tests of normality, hz, royston, dh and
energy are also available in the MVN package. The code is the same as below except
that mardia is replaced with the name of the other test.	
	
install.packages("MVN")
library(MVN)

par(mfrow=c(1,1))

mvn(y, mvnTest = "mardia", multivariatePlot = "qq")
Marida's Multivariate Normality Test
kurtosis & skew should not be significant
	
	

	
	

	
	

256	

	
	
The mutlivariate test of normality is indicating that we have problems with both
skewness and kurtosis (both a significant). The dataset definitely needs transformation,
or might be more suitable for a non-parametric method, such as NMDS (described below).
Let's persist and look at whether the multivariate variances are equal by group.

2) Multivariate equal variances
	
To check multivariate equal variances we will use the numeric matrix again. What we are
checking here is whether there is equal covariances of the responses across the predictor
groups we are interested in.	
	
We will then use Box's M test of covariance matrices (boxM in library biotools).	
	
install.packages("heplots")
library(biotools)

boxM(y, agilis$HABITAT)

RESULT

 $multivariateNormality
 Test Statistic p value Result
1 Mardia Skewness 1264.84949032525 8.92474964193033e-228 NO
2 Mardia Kurtosis 30.5199762850272 0 NO
3 MVN <NA> <NA> NO

$univariateNormality
 Test Variable Statistic p value Normality
1 Shapiro-Wilk ABH.m2 0.8509 <0.001 NO
2 Shapiro-Wilk median.ABH 0.2956 <0.001 NO
3 Shapiro-Wilk STUMPS 0.6394 <0.001 NO
4 Shapiro-Wilk SHRUB.COUNT 0.9577 8e-04 NO
5 Shapiro-Wilk SHRUB.SPECIES 0.9674 0.0052 NO
6 Shapiro-Wilk pcNONEUC 0.8870 <0.001 NO 	

RESULT

 Box's M-test for Homogeneity of Covariance Matrices

data: y
Chi-Sq (approx.) = 166.68, df = 21, p-value < 2.2e-16
	

	
	

257	

It	appears	that	we	also	have	unequal	multivariate	variances	across	the	groups.	This	data	is	
almost	 certainly	 not	 suitable	 for	 a	MANOA.	We	would	 probably	 opt	 to	 use	 a	 NMDS	 and	
ANOSIM	at	this	point,	but	for	completion,	let's	run	the	MANOVA	test	and	look	at	the	results.	
	

Running the MANOVA test
	
habitat.mva <- manova(y~HABITAT)
summary(habitat.mva)

There is a significant difference in environmental variables by habitat type (continuous
or fragmented), but keep in mind that all of the assumptions were failed, so this result
is not reliable.

The univariate results:
summary.aov(habitat.mva)

Results are shown over the page. There was a significant difference in stumps, shrub
species richness and the percentage of trees that were not eucalyptus, but as per above,
keep in mind that with the assumptions so badly failed, these results are not reliable. We
definitely want to take this data and apply an NMDS approach instead.

	 	

RESULT

 Df Pillai approx F num Df den Df Pr(>F)
HABITAT 1 0.41998 13.637 6 113 1.342e-11 ***
Residuals 118

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1	

	
	

258	

	
	
	 	

RESULT

 > summary.aov(habitat.mva)
 Response ABH.m2 :
 Df Sum Sq Mean Sq F value Pr(>F)
HABITAT 1 20 20 1e-04 0.9934
Residuals 118 33997556 288115

 Response median.ABH :
 Df Sum Sq Mean Sq F value Pr(>F)
HABITAT 1 2.0413e+09 2041343300 2.9604 0.08795 .
Residuals 118 8.1366e+10 689546127

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

 Response STUMPS :
 Df Sum Sq Mean Sq F value Pr(>F)
HABITAT 1 42.008 42.008 16.262 9.819e-05 ***
Residuals 118 304.817 2.583

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

 Response SHRUB.COUNT :
 Df Sum Sq Mean Sq F value Pr(>F)
HABITAT 1 10509 10509.4 3.7392 0.05555 .
Residuals 118 331652 2810.6

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

 Response SHRUB.SPECIES :
 Df Sum Sq Mean Sq F value Pr(>F)
HABITAT 1 8.533 8.5333 4.0224 0.04719 *
Residuals 118 250.333 2.1215

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

 Response pcNONEUC :
 Df Sum Sq Mean Sq F value Pr(>F)
HABITAT 1 2.7242 2.72422 46.902 3.582e-10 ***
Residuals 118 6.8538 0.05808

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
	

	
	

259	

Nonmetric Multidimensional Scaling

One limitation of PCAs is that the result becomes more 'sub-optimal' the further away
the data is from a set of normal distributions. Nonmetric multidimensional Scaling
(NMDS) is another ordination approach that does not rely on normality of data. The
disadvantage of NMDS compared to PCAs is that NMDS does not (easily) allow for
'variable reduction'--that is, there is no easy way to extract something similar to a PCA
axis and compare the values to loadings for interpretation against statistical tests like
ANOVAs or t-tests. Nonetheless, especially for species count data, where the data may
be extremely non-normal, NMDS may be the best option available.

Load libraries
library(vegan)
library(MASS)

Load data. Remember to change your working directory first.
agilis <- read.table('agilis-abundance.csv', header=T,sep=',')
str(agilis)	

First, we need to bind data together into a single set. We'll call this set y, although you
could name it anything you want to. We will use the same data as was used for the PCA
for comparison. This is a set of six environmental variables measured in eucalyptus forest
sites in South Gippsland.

attach(agilis)
y <- cbind(~ABH.m2, median.ABH, STUMPS, SHRUB.COUNT,
SHRUB.SPECIES, pcNONEUC)

An NMDS won't work with duplicated rows. We can check this with the duplicated
command. Here's what you would see if there were some duplicated rows.

duplicated(y)
[1] FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE
FALSE TRUE FALSE

We need to take a moment to think about why there are duplicated rows. The unique
command can be used to strip out duplicates, but before you do this, you need to work
out whether this is a sensible step. These might be data entry errors, or they might be
real data duplicates. Here is the code, but don't do this just yet…

y <- unique(y)
duplicated(y)

But this is quite drastic. Is it a good idea to do here?

	
	

260	

Why might we have duplicates? This is because the dataset is made up of male and
female abundances, and males and females were (obviously) living in the same sites. So,
the environmental variables are 'duplicated' for the two sexes. This means that the most
sensible thing to do is probably to split by male and female and produce two NMDS (or
average the data by site for the two sexes).

Keep in mind that we are generating two NMDS that should be identical. We wouldn't
expect any difference between the female and male NMDS because they both are based
on the same set of environmental variables. Producing two NMDS, rather than one, is just
a matter of playing on the safe side, as we want to compare the NMDS results to the
original dataset, and working with males and females separately is just a little safer.

Create subsets of only the variables you are interested in using for the basis of the
NMDS.

female <- subset(agilis,subset=agilis$SEX=='F')
male <- subset(agilis,subset=agilis$SEX=='M')	
	
attach(female)
female.y <- cbind(ABH.m2, median.ABH, STUMPS, SHRUB.COUNT,
SHRUB.SPECIES, pcNONEUC)

attach(male)
male.y <- cbind(ABH.m2, median.ABH, STUMPS, SHRUB.COUNT,
SHRUB.SPECIES, pcNONEUC)

Now, we will generate distances based on Bray-Curtis dissimilarities. These are non-
parametric distances, which is one of the big advantages of NMDS over PCA. An NMDS
is much more suitable for data like species counts than is a PCA, because species
counts (for example) are often not normally distributed. The command is called
'vegdist' because the package was originally created for botanists.

female.dist <- vegdist(female.y, method = "bray")
male.dist <- vegdist(male.y, method = "bray")

You have a number of dissimilarity matric options. Use ?vegdist to view them. You
will need to do a bit of reading up on various approaches to decide which is best, but
as a starting point Bray-Curtis dissimilarity matrices are generally well liked.

	
	

261	

Perform the multidimensional scaling. The command k=2 tells R to try and create two
axes. Different numbers of axes will alter the 'stress' on the model (the degree to which
the data is having to be twisted up to match the axes). We would tend to prefer stress
in an NMDS to be below 0.15 or 15%. You can also try an iterative approach where you
try k = 2, k = 3, k = 4 and pick the number of axes with the lowest stress.

female.mds <-isoMDS(female.dist, k=2)
male.mds <-isoMDS(male.dist, k=2)

View the results. We'll just look at female.mds for now… the results are on the next
page.

female.mds	
	
A	key	thing	to	pay	attention	here	is	the	'stress'.	You	can	think	of	this	as	a	measure	of	the	
degree	to	which	the	data	has	to	be	contorted	and	twisted	to	fit	into	the	number	of	axes	you	
have	asked	for	(here,	2	axes).	The	isoMDS	function	multiplies	the	stress	by	100,	so	that	the	
stress	value	of	4.8	should	be	read	as	either	4.8%	or	0.048.	The	typical	breakdown is that
stress < 0.05 is an excellent representation of the original data in reduced dimensions;
< 0.1 is great; <0.15 is good; < 0.2 is acceptable, and stress > 0.3 provides a very poor
representation.We	have	a	stress	of	0.048,	which	is	well	below	0.15,	which	is	the	usual	
threshold	that	is	used.	
	
As	a	test,	see	what	happens	if	you	increase	the	number	of	axes…	try	this:	
	
female.mds <-isoMDS(female.dist, k=3)
female.mds	
	
and	
	
female.mds <-isoMDS(female.dist, k=5)
female.mds	
	
Does	the	stress	increase	or	decrease?	It	should	decrease	with	increasing	numbers	of	axes,	
because	the	data	doesn't	need	as	much	contortion	to	fit	more	axes.	However,	in	our	
instance,	we	already	have	a	perfectly	good	stress	at	k=2	(two	axes),	so	we	will	stick	with	
that.	If	your	stress	is	15%,	the	you	may	need	to	increase	the	number	of	axes	to	bring	it	
under	15%.	Notice	also	that	as	you	increase	the	k,	the	number	of	columns	(containing	
synthetic	axis	values)	increases	to	match	k.	
	

	
	

262	

RESULT

$points
 [,1] [,2]
 [1,] -0.96615479 0.144868265
 [2,] -1.44357877 -0.000543712
 [3,] -0.21788957 0.082905390
 [4,] -1.82468080 -0.363232668
 [5,] 0.60275613 0.208649013
 [6,] 1.13070582 0.013311258
 [7,] 0.45859702 -0.097704434
 [8,] 0.17326574 0.405981457
 [9,] -1.26389869 0.022445365
[10,] -1.47021456 -0.289450802
[11,] -0.57205734 0.067410399
[12,] -0.20821781 0.028843803
[13,] -1.19447307 0.089615265
[14,] 0.56380012 0.335212120
[15,] -0.94317527 0.053315377
[16,] -1.55030903 -0.209722507
[17,] 1.58721462 0.124209746
[18,] -2.50460748 -0.538924605
[19,] -0.76625775 -0.047346446
[20,] 1.85246162 0.365160488
[21,] 0.75593823 0.418793619
[22,] -0.37849132 -0.076688801
[23,] -0.77491349 -0.335736327
[24,] 0.57780265 0.487023542
[25,] 0.31862263 0.371708129
[26,] -0.21904967 0.032116977
[27,] 0.69845165 -0.118854730
[28,] 0.87865561 0.573727596
[29,] 0.83292493 0.289940260
[30,] 0.24749676 -0.090787429
[31,] 0.99372597 0.115986274
[32,] -0.18146465 -0.157593561
[33,] 0.67243172 -0.428235084
[34,] -0.93018726 0.378949247
[35,] 0.23756426 -0.104480319
[36,] -3.17185459 -1.416230295
[37,] 0.08611587 -0.206890877
[38,] 0.66506936 0.488828549
[39,] 0.53450984 0.550959299
[40,] -1.02845028 -0.191097564
[41,] 0.99472534 -0.335686944
[42,] 0.03405531 0.568535584
[43,] 0.03856378 0.269935961
[44,] 1.05849896 0.179479569
[45,] 1.86119470 0.425256543
[46,] 1.35458597 -0.427008818
[47,] -4.05496686 -2.117757748
[48,] -0.29532518 0.109827988
[49,] -0.05328914 0.426629844
[50,] 1.29541224 -0.108002043
[51,] -0.96480595 -0.012379569
[52,] 1.19632978 -1.043637889
[53,] 1.71140122 0.498575204
[54,] 0.90976718 -0.182672910
[55,] 1.21162000 0.088424282
[56,] 0.47828599 0.229274784
[57,] -0.27916480 0.125922023
[58,] 1.32376763 -0.084686297
[59,] 0.65067383 0.379054257
[60,] -0.72951434 0.034474899

$stress
[1] 4.81661

	
	

263	

Shepard Plot
A stress of 4.8 is read as 4.8% or 0.048. This is well below the usual 15% threshold, and
so we can accept this NMDS as appropriate.

You can create a Shepard Plot, which in NMDS should appear as a monotonic series of
points, and in a situation where dissimilarities are used (as in here) the plot should run
from the bottom left to the top right (MDS can be based on similarities, but we won't
cover this here).

plot(Shepard(female.dist,female.mds$points))

	

The Shepard plot should follow a smooth line or curve with a reasonably tight scatter
around the line. We seem to have a reasonably nice-looking curve here, and our results
are probably sound. If the Shepard plot looks like 'steps' or has a clear bend or L shape
to it, then NMDS may not be suitable for the data, and other methods should be
investigated.

	
	

264	

Contribution of variables to axes
The 'envfit' command in library 'vegan' allows you to check the relative contribution of
the original variables against your axes. It is call envfit because the authors assume you
will be working with environmental data, but, of course it could be applied to anything
that was used to build an NMDS (i.e. genetic or morphometric data would work fine too).

agilis.envfit <- envfit(female.mds,female.y, choices=c(1,2))
agilis.envfit
	

	

The 'envfit' function runs a permutation test to identify associations between the
measured variables (here vegetation measures) and the NMDS axes. The permutation
test works by shuffling data and working out how often a test statistic of the magnitude
of the observed from the actual data might occur by chance alone. The R2 value is the
proportion of times that the actual data has a greater magnitude than the random data.
The results present:

• Cosine of the angle to each axis: you can read these as if they were Pearson's r
values. The closer to +1, the closer we are to a perfect positive association
between a variable and an axis. The closer the -1, the closer we are to a perfect
negative fit. In the above example, stumps has a -0.998 value for Dim1 and a -
0.056 value for Dim2. This means that stumps is strongly aligning with Dim1 and
as values of Dim1 increase, the number of stumps decreases. With regards to
Dim2, stumps has no particular relationship. As a rule of thumb, anything below
0.4 is probably not worth interpreting.

• R2 of the fit of the original data to the ordination.
• P value based on permutations.

	 	

RESULT

***VECTORS

 Dim1 Dim2 r2 Pr(>r)
ABH.m2 0.17196 -0.98510 0.2477 0.002 **
median.ABH -0.26006 -0.96559 0.6692 0.001 ***
STUMPS -0.99840 -0.05647 0.0340 0.336
SHRUB.COUNT 0.21907 -0.97571 0.0844 0.076 .
SHRUB.SPECIES 0.44290 -0.89657 0.2602 0.001 ***
pcNONEUC 0.98416 0.17727 0.2409 0.001 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’
1
Permutation: free
Number of permutations: 999

	
	

265	

This means that the R2 and the P value may be of only limited use to you. These are
informative about whether a variable is showing a strong relationship with both axes
combined. However, it may be interesting to examine axes one-by-one. In the above
example Stumps is not significantly captured by the whole ordination, but it is strongly
negatively associating with Dim1. Percentage on non-eucalyptus trees is also strongly
associating with Dim1, but in the other direction. Non-eucalyptus trees in the study area
are often high-value timber. It may not be a coincidence that the more stumps there are,
the fewer non-eucalyptus trees there are. Trees like blackwoods may have been be
selectively logged out of a forest stand, leaving only stumps behind. This relationship
wouldn't be interpretable if we fixate on interpreting both axes together.

Of the output from the

Let's move the MDS1 and MDS2 (Dim1 and Dim2) values back into the dataset for
visualisation and statistical use.
	
female$mds1<- female.mds$points[,1]
female$mds2<- female.mds$points[,2]
	
par(mfrow=c(1,2)) # set plotting window to a 1x2 array
boxplot(mds1~HABITAT,data=female, col=c("white","grey"))
boxplot(mds2~HABITAT,data=female, col=c("white","grey"))
par(mfrow=c(1,1)) # return plotting window to a 1x1 array
	

	

	
	

266	

t.test(mds1~HABITAT,data=female)
t.test(mds2~HABITAT,data=female)
	

	
	
The	 interpretation	 is	 that	 there	 is	 a	 significant	 difference	 between	 Continuous	 and	
Fragmented	forest	for	mds1	(P	=	0.005),	but	there	is	no	significant	difference	for	MDS1	(P	=	
0.248).	In	order	to	understand	what	this	means,	we	have	to	look	at	the	envdist	table	and	the	
boxplot	on	the	previous	page.	Continuous	forest	fragments	have	high	values	of	MDS1	and	
fragmented	forest	sites	had	lower	values	of	MDS1,	on	average.	High	values	of	MDS1	associate	
with	more	non-eucalyptus	trees	(pcNONEUC),	more	shrub	species	and	fewer	stumps	(all	have	
cosine	values	stronger	than	0.3).	There	 is	no	strong	association	with	area	at	breast	height	
(ABH),	median	area	at	breast	height	(median.ABH)	and	shrub	count.	The	implication	is	that	
continuous	forest	sites	have	significantly	greater	percentages	of	non-eucalyptus	trees,	more	
shrubs	species	richness	and	fewer	stumps	than	do	forest	fragments.		
	

RESULT

> t.test(mds1~HABITAT,data=female)

 Welch Two Sample t-test

data: mds1 by HABITAT
t = 2.9138, df = 54.133, p-value = 0.005181
alternative hypothesis: true difference in means is not equal
to 0
95 percent confidence interval:
 0.2646574 1.4320055
sample estimates:
mean in group C mean in group F
 0.4241657 -0.4241657

> t.test(mds2~HABITAT,data=female)

 Welch Two Sample t-test

data: mds2 by HABITAT
t = 1.1684, df = 57.068, p-value = 0.2475
alternative hypothesis: true difference in means is not equal
to 0
95 percent confidence interval:
 -0.0983413 0.3738719
sample estimates:
mean in group C mean in group F
 0.06888266 -0.06888266

	
	

267	

Now, onto plotting the NMDS as an ordination. We'll do this for females only at this stage,
as the Males and Females are going to look identical, as we are simply using the presence
of antechinus at a site as a guide to where environmental variables were recorded. The
groups are fragmented and continuous forest habitats.

An NMDS ordination plot using polygons

plot(female.mds$points,type="n") # blank canvas plot
ordihull(female.mds,groups=female$HABITAT, draw="polygon",
col="grey90", label=F) # Polygons with no labels

text(female.mds$points,lab=female$HABITAT,col="gray", adj =1.5)
Text added in grey with a slight offset of 1.5 characters

female$HABITAT<-as.factor(female$HABITAT)
Change habitat to a factor to get the next step to work

points(female.mds$points,pch=16,col=as.numeric(female$HABITAT))
Add coloured points, using point character 16 (solid circle)

	
The	interpretation	is	similar	to	any	other	ordination:	the	greater	the	overlap	of	polygons	the	
more	similar	(overall)	are	the	underlying	variables	measured	at	the	sites.	 	

	
	

268	

An NMDS ordination plot using ellipses
The ehull command draws an ellipse around all points. The sd command draws an ellipse
around the standard devition of the points. The se command draws an ellipse around the
standard error of the points. I've left out the text labels, as they cluttered the figure
enough to make it hard to read, but they could be added back in by removing the hash.

plot(female.mds$points,type="n")

ordiellipse(female.mds,groups=female$HABITAT,alpha =
50,draw="polygon",col=c("grey70","rosybrown2"),label=F,kind="ehull")

ordiellipse(female.mds,groups=female$HABITAT,alpha =
50,draw="polygon",col=c("grey70","rosybrown2"),label=F,kind="sd")

ordiellipse(female.mds,groups=female$HABITAT,alpha =
50,draw="polygon",col=c("grey70","rosybrown2"),label=F,kind="se")

text(female.mds$points,lab=female$HABITAT,col="gray", adj = 1.5)
Text added with a 1.5 offset

female$HABITAT<-as.factor(female$HABITAT)
points(female.mds$points,pch=16,col=as.numeric(female$HABITAT)) # Add
coloured points, using point character 16 (solid circle)

	 	

	
	

269	

An NMDS plot using isobars
Finally, we might be interested in placing a continuous variable onto the NMDS. In the
case of the antechinus we have a measure of abundance taken from a square root of
captures per trap (sqrtAGILIS). We can plot this for males and females: the figures should
be different because although male and female antechinus were present at the same
sites, they were present at different levels of abundance.

ordisurf(female.mds, female$sqrtAGILIS, main="", col="forestgreen")
female$HABITAT<-as.factor(female$HABITAT)
points(female.mds$points, pch=16, col=as.numeric(female$HABITAT)) # Add
coloured points using point character 16 (solid circle)
	

	

The isobars for females suggest a fairly flat abundance with a peak abundance of
0.3145811 sqrtAGILIS towards the middle of the distribution, not clearly in the
fragmented (red) or continuous (black) forest.
	 	

	
	

270	

The same plot for males…

ordisurf(male.mds, male$sqrtAGILIS, main="", col="forestgreen")
male$HABITAT<-as.factor(male$HABITAT)
points(male.mds$points, pch=16,col=as.numeric(male$HABITAT)) # Add
points using point character 16 (solid circle)

The	isobars	for	males	has	a	bit	more	steepness	to	it.	There's	a	clear	peak	of	0.48	in	the	
continuous	forested	sites	(black),	and	a	trough	of	0.30	in	the	fragmented	sites	(red).	

	
	

	
	

271	

ANOSIM
An Analysis of Similarity is sometimes reported with a NMDS because it is based off the
same fundamental methodology of generating a dissimilarity (or similarity) matrix.
Continuing from the example above, we already created a distances matrix, but if you
had not done so, you need to do this as a first step.

female.dist<-vegdist(female.y, method = "bray")

Create the ANOSIM
female.ano<-anosim(female.dist,female$HABITAT) # Run an ANOSIM

Look at the results of the ANOSIM
summary(female.ano) # examine ANOSIM

We have a significant result (P = 0.001) but, ANOSIMs are extremely powerful to the
point of inflating Type I error. They tend to be significant more often than not. The
relatively low R of 0.1431 requires a bit of caution with the interpretation.

RESULT

Call:
anosim(dat = female.dist, grouping = female$HABITAT)
Dissimilarity: bray

ANOSIM statistic R: 0.1431
 Significance: 0.001

Permutation: free
Number of permutations: 999

Upper quantiles of permutations (null model):
 90% 95% 97.5% 99%
0.0269 0.0386 0.0545 0.0754

Dissimilarity ranks between and within classes:
 0% 25% 50% 75% 100% N
Between 1 512.75 981 1387.25 1770 900
C 4 360.50 670 1042.50 1751 435
F 2 461.00 978 1399.50 1769 435

	
	

272	

Plot results of the ANOSIM
plot(female.ano)

The notches in the boxplots are read as per standard notched boxplots: if notches
overlap horizontally, then the groups are not different. The notches do not overlap for
continuous and fragmented forest, so we can consider these different habitat structures
based on the environmental variables measured and included.

	 	

	
	

273	

Survival analysis
Survival analysis deals with the time elapsed before an event occurs. In classically
statistics, this is death (time to death after exposure to a poison, time to death when
exposed to cold etc), but the analysis can be applied to any fixed event, such as the time
it takes chicks in a nest to fledge (leave the nest) or the time it takes an animal to find
hidden food in an enclosure.

Survival analysis therefore has two response variables. Whether or not the event occurred
(1 = YES, 0 = NO) and the time elapsed before the time occurred. If trials are for a limited
time (in the food searching experiment we might only run each trial to 45 min) then an
animal that reaches the end of the trial without finding food would have a score of 0, 45
min. An animal that found the food in 10.5 min would have a score of 1, 10.5 min, and
so on.

	

Parametric Survival analysis
For some reason we have decided that we really want to know whether agile antechinus
(left) or yellow-footed antechinus (right) are better at running through mazes. We have
three mazes (treatments T1, T2 and T3) and 30 individuals of each species.

Import the data and have a look at it.
maze <- read.table('survival.csv',header=T, sep = ',')

Look at the whole dataset so that you can see how it is laid out.
maze

The first thing we need to work out here are out predictor and response variables. In each
trial (maze 1, maze 2, maze 3), there are two predictor variables:
• Did the event happen? (categorical, yes or no)
• How long did it take, if the event happened? (continuous measurement of time)

We have (potentially) two predictor variables:
• Species (a two level factor)
• Body size (continuous)

	
	

274	

RESULT

> maze
 SPECIES INDIVIDUAL MASS.g T1.goal T1.time T2.goal T2.time T3.goal T3.time
1 agilis A1 33 1 5.1 1 11.2 0 45.0
2 agilis A10 33 1 2.4 1 11.2 1 2.1
3 agilis A11 30 1 33.7 1 10.2 0 45.0
4 agilis A12 31 1 9.6 1 1.7 1 2.3
5 agilis A13 30 1 4.0 1 18.3 0 45.0
6 agilis A14 29 1 2.5 1 1.6 1 9.8
7 agilis A15 30 1 1.2 1 9.4 0 45.0
8 agilis A16 34 1 4.3 1 4.4 0 45.0
9 agilis A17 32 1 35.0 1 3.2 0 45.0
10 agilis A18 34 1 30.8 1 16.2 1 9.1
11 agilis A19 30 1 26.5 1 2.1 1 4.2
12 agilis A2 33 1 1.9 0 45.0 1 9.4
13 agilis A20 32 1 5.6 1 44.2 1 3.3
14 agilis A21 29 1 4.3 1 2.3 1 19.2
15 agilis A22 32 1 7.6 1 5.1 1 2.2
16 agilis A23 37 0 45.0 1 2.1 0 45.0
17 agilis A24 29 1 12.4 1 10.5 1 2.6
18 agilis A25 28 1 14.0 1 0.6 0 45.0
19 agilis A26 34 1 2.4 1 4.7 0 45.0
20 agilis A27 30 1 33.7 1 4.2 1 15.3
21 agilis A28 28 1 25.4 1 1.6 1 12.1
22 agilis A29 32 1 17.2 1 15.0 1 9.3
23 agilis A3 32 1 6.2 1 34.3 1 3.7
24 agilis A30 34 1 37.5 1 10.8 1 3.1
25 agilis A4 30 1 12.4 1 8.8 1 29.3
26 agilis A5 34 1 9.6 1 18.8 1 0.3
27 agilis A6 34 1 14.4 1 13.3 1 10.8
28 agilis A7 35 0 45.0 1 17.6 0 45.0
29 agilis A8 30 0 45.0 1 5.8 1 2.0
30 agilis A9 31 1 0.9 1 24.2 1 16.5
31 flavipes F1 35 1 20.8 1 0.8 0 45.0
32 flavipes F10 34 0 45.0 0 45.0 0 45.0
33 flavipes F11 32 0 45.0 1 10.1 0 45.0
34 flavipes F12 36 1 8.5 1 2.3 0 45.0
35 flavipes F13 30 1 6.8 0 45.0 0 45.0
36 flavipes F14 30 1 5.0 1 28.2 0 45.0
37 flavipes F15 32 1 11.7 0 45.0 0 45.0
38 flavipes F16 30 1 8.9 0 45.0 0 45.0
39 flavipes F17 30 1 40.9 0 45.0 1 42.5
40 flavipes F18 32 0 45.0 1 5.1 0 45.0
41 flavipes F19 33 1 5.9 1 8.1 0 45.0
42 flavipes F2 34 0 45.0 1 8.0 0 45.0
43 flavipes F20 30 1 5.2 0 45.0 0 45.0
44 flavipes F21 43 1 43.2 0 45.0 0 45.0
45 flavipes F22 32 0 45.0 1 31.0 0 45.0
46 flavipes F23 34 1 7.8 1 17.6 1 15.6
47 flavipes F24 31 0 45.0 1 4.5 0 45.0
48 flavipes F25 33 0 45.0 1 22.3 0 45.0
49 flavipes F26 33 1 29.2 0 45.0 1 23.2
50 flavipes F27 27 1 9.3 1 14.6 0 45.0
51 flavipes F28 35 1 38.6 0 45.0 0 45.0
52 flavipes F29 32 0 45.0 1 28.7 0 45.0
53 flavipes F3 30 0 45.0 1 5.8 1 8.8
54 flavipes F30 40 1 29.9 1 10.5 0 45.0
55 flavipes F4 34 1 36.4 0 45.0 0 45.0
56 flavipes F5 33 1 42.0 1 5.4 0 45.0
57 flavipes F6 30 1 32.5 0 45.0 0 45.0
58 flavipes F7 34 0 45.0 0 45.0 0 45.0
59 flavipes F8 34 0 45.0 0 45.0 0 45.0
60 flavipes F9 34 0 45.0 1 13.2 0 45.0

	
	

275	

We’re going to have to use a package in R to do a survival analysis. The basic R setup
doesn’t support survival analyses very well:
library(survival)

Create a survival object
maze.T1.surv <- with(maze, Surv(T1.time,T1.goal))

From this we can create a survival curve. We will set colours for the two species. R always
sets things like colours alphabetically, so first we’ll check the categories:

And now the plot:
maze.fit <- survfit(maze.T1.surv~SPECIES,data=maze)
plot(maze.fit, col=c("grey","black"), lty=1, lwd=2)	

lty="dashed" instructs R to make the lines dashed. You can try different colours if you
like.

RESULT

levels(maze$SPECIES)
[1] "agilis" "flavipes"

	
	

276	

Now we can run a survival test. There are a number of different possible tests. They
shouldn’t vary a lot in the final P-values, though, so we're going to start by applying one
of the more straightforward tests.

survdiff(maze.T1.surv~SPECIES,data=maze)

	

This suggests that there is a difference between the species, but, we might be concerned
that body size is having an effect here too. Perhaps larger antechinus explore more
quickly or vice versa. Because we are adding a continuous variable, we need to use
regression. Because we are using a parametric approach here, we need to build a number
of different models and look for the best fit to various distributions:

surv.reg.W <- survreg(maze.T1.surv ~ SPECIES * MASS.g, data =
maze, dist = "weibull")

surv.reg.E1 <- survreg(maze.T1.surv ~ SPECIES * MASS.g, data =
maze, dist = "exponential")

surv.reg.E2 <- survreg(maze.T1.surv ~ SPECIES * MASS.g, data =
maze, dist = "extreme")

surv.reg.G <- survreg(maze.T1.surv ~ SPECIES * MASS.g, data =
maze, dist = "gaussian")

surv.reg.L <- survreg(maze.T1.surv ~ SPECIES * MASS.g, data =
maze, dist = "logistic")

We can use an anova function to compare models.

Pick the model with the lowest -2*LL (this is related to the notion of information
criterion and is similar to how an AIC is used. We'll look at AICs in a subsequent section,
but for now all you need to know is that the lower -2*LL, the better the model).

RESULT

Call:
survdiff(formula = maze.T1.surv ~ SPECIES, data = maze)

 N Observed Expected (O-E)^2/E (O-E)^2/V
SPECIES=agilis 30 27 16.3 6.96 11.4
SPECIES=flavipes 30 18 28.7 3.97 11.4

 Chisq= 11.4 on 1 degrees of freedom, p= 0.00072

	
	

277	

anova(surv.reg.W, surv.reg.E1, surv.reg.E2, surv.reg.G,
surv.reg.L)
	

	

Both the Weibull and exponential distributions appear to be similarly good fits. The
Weibull does have a marginally lower AIC, so we'll pick it as the distribution to use
(Weibull is a quite flexible form of distribution, and you'll tend to find it is often the best,
or at least in the top couple options).

summary(surv.reg.W)
	

	

The interaction is not significant, so it can be removed. Re-run with model without the
interaction term.

RESULT

> anova(surv.reg.W, surv.reg.E1, surv.reg.E2, surv.reg.G, surv.reg.L)
 Terms Resid. Df -2*LL Test Df Deviance Pr(>Chi)
1 SPECIES * MASS.g 55 386.9572 NA NA NA
2 SPECIES * MASS.g 56 386.9938 = -1 -0.03661785 0.8482452
3 SPECIES * MASS.g 55 430.7299 = 1 -43.73603636 NA
4 SPECIES * MASS.g 55 421.5351 = 0 9.19475192 NA
5 SPECIES * MASS.g 55 424.2975 = 0 -2.76243548 NA

RESULT

> summary(surv.reg.W)

Call:
survreg(formula = maze.T1.surv ~ SPECIES * MASS.g, data = maze,
 dist = "weibull")
 Value Std. Error z p
(Intercept) -0.2431 2.4104 -0.101 0.920
SPECIESflavipes 3.1758 3.6509 0.870 0.384
MASS.g 0.0996 0.0764 1.303 0.193
SPECIESflavipes:MASS.g -0.0696 0.1125 -0.618 0.536
Log(scale) -0.0242 0.1258 -0.192 0.848

Scale= 0.976

Weibull distribution
Loglik(model)= -193.5 Loglik(intercept only)= -200.1
 Chisq= 13.32 on 3 degrees of freedom, p= 0.004
Number of Newton-Raphson Iterations: 5
n= 60

	
	

278	

surv.reg.W<- survreg(maze.T1.surv ~ SPECIES + MASS.g, data =
maze, dist = "weibull")
summary(surv.reg.W)
	

	

Species is having a significant effect, but mass is not. The ‘value’ and ‘Std.Error’ is the
effect size ± standard error. The final result appears to be that flavipes take significantly
longer to solve a maze than do agilis.

At this point it would also be senibsle to check the basic assumptions of the model. There
is no straightforward way to generate a standard set of diagnostic plots from a survival
regression, so we'll simply extract the residuals and use them to check for normality and
equal variances. If the model is not following the specified distribution, we would expect
to see a non-normal distribution of residuals.

RESULT

> summary(surv.reg.W)

Call:
survreg(formula = maze.T1.surv ~ SPECIES + MASS.g, data = maze,
 dist = "weibull")
 Value Std. Error z p
(Intercept) 0.7019 1.8351 0.382 0.70210
SPECIESflavipes 0.9302 0.3139 2.964 0.00304
MASS.g 0.0696 0.0577 1.206 0.22796
Log(scale) -0.0216 0.1255 -0.172 0.86356

Scale= 0.979

Weibull distribution
Loglik(model)= -193.7 Loglik(intercept only)= -200.1
 Chisq= 12.95 on 2 degrees of freedom, p= 0.0015
Number of Newton-Raphson Iterations: 5
n= 60

	
	

279	

First, extract the residuals of the model and drop them into an object called y.

y <- resid(surv.reg.W)

Now, check the histogram of the residuals.
hist(y)

Now try a qqplot:
qqnorm(y)
qqline(y, probs = c(0.25, 0.75), col = "red")

	
	

280	

The distribution looks a little odd, but let's try a Shapiro-Wilk's test as well.

shapiro.test(y)

Given that Shapiro-Wilk's tests are quite aggressive, a P value of 0.08 is probably
acceptable. We'll continue with the parametric analysis of this trial, but if you were to
obtain a Shapiro-Wilk's result of P < 0.01 it is probably worth also checking the non-
parametric Cox's option as well. If the results differ substantially, the non-parametric
Cox's probably hazard test is likely the better option.

We can also have a go at generating something akin to a residuals vs fitted plot, but we
have to extract the fitted values from a dummy linear model manually. First, drop the
residuals into the dataset.
maze$y <- resid(surv.reg.W)

Create a dummy linear model to obtain fitted values. Drop these into the dataset too.
fit.lm<-lm(T1.time ~ SPECIES + MASS.g,data=maze)
maze$fitted<-fitted.values(fit.lm)

Plot the residuals against the fitted values.
plot(y~fitted,data=maze)

As with standard residuals versus fitted plots, we would be concerned if there was a clear
'wedge' or 'arrowhead' shape in the cloud of data points. That doesn't seem to be the
case here, so at this point we will move along with the analysis.

RESULT

> shapiro.test(y)

 Shapiro-Wilk normality test

data: y
W = 0.96544, p-value = 0.08706

	
	

281	

	
	

Figure	X.	Survival	analysis	plot	for	Maze	1.	Grey:	A.	agilis.	Black:	A.	flavipes.	
	

	

	
Figure	X.	Survival	analysis	plot	for	Maze	2.	Grey:	A.	agilis.	Black:	A.	flavipes.	

	
	

	
Figure	X.	Survival	analysis	plot	for	Maze	3.	Grey:	A.	agilis.	Black:	A.	flavipes.	

	
	
	

	
	

282	

Non-parametric Cox Probable Hazards Survival Analysis
Another option is to try a non-parametric Cox's Probable Hazard (Cox PH) survival
analysis. Like all non-parametric tests, Cox's PH will (very slightly) inflate your Type II
error, which is probably the reason it tends to be avoided in biological sciences. However,
it is a very popular choice in medical studies, and will tend to give a (more or less) similar
result to a properly fitted parametric test.

maze.T1.surv <- with(maze, Surv(T1.time,T1.goal))

coxph(maze.T1.surv ~ SPECIES * MASS.g, data = maze)

Remove the non-significant interaction term.

coxph(maze.T1.surv ~ SPECIES + MASS.g, data = maze)

RESULT

Call:
coxph(formula = maze.T1.surv ~ SPECIES * MASS.g, data = maze)

 coef exp(coef) se(coef) z p
SPECIESflavipes -3.6018 0.0273 3.7370 -0.96 0.34
MASS.g -0.1075 0.8981 0.0797 -1.35 0.18
SPECIESflavipes:MASS.g 0.0819 1.0853 0.1151 0.71 0.48

Likelihood ratio test=13 on 3 df, p=0.00458
n= 60, number of events= 45

RESULT

Call:
coxph(formula = maze.T1.surv ~ SPECIES + MASS.g, data = maze)

 coef exp(coef) se(coef) z p
SPECIESflavipes -0.9550 0.3848 0.3182 -3.00 0.0027
MASS.g -0.0710 0.9315 0.0596 -1.19 0.2337

Likelihood ratio test=12.5 on 2 df, p=0.0019
n= 60, number of events= 45

	
	

283	

Mixed Effects Cox Probable Hazards Survival Analysis
If you need to include a random effect, there is an option in the 'coxme' package. There
is no parametric mixed effects model survival analysis (so far as I am aware) in R, so
where random effects are needed to control for pseudoreplication, you will need to use
the non-parametric option (although, this is only non-parametric in a sense: the model
assumes a Gaussian distribution for the random effect).

The below code is similar to what we have been running above, except that we have
included a random effect 'T1.time.of.day' because some trials were run in the evening
and other trials were in the afternoon, and we are concerned this might affect behaviour
as antechinus are nocturnal.

maze <- read.table('survival.csv',header=T, sep = ',')

fit.coxme <- coxme(Surv(T1.time,T1.goal) ~ SPECIES + MASS.g +
(1|T1.time.of.day), data=maze)

fit.coxme # no need to use 'summary'

	

RESULT

Cox mixed-effects model fit by maximum likelihood
 Data: maze
 events, n = 45, 60
 Iterations= 5 28
 NULL Integrated Fitted
Log-likelihood -160.7289 -154.1803 -153.4261

 Chisq df p AIC BIC
Integrated loglik 13.10 3.0 0.0044309 7.10 1.68
 Penalized loglik 14.61 2.6 0.0014141 9.41 4.71

Model: Surv(T1.time, T1.goal) ~ SPECIES + MASS.g + (1 |
T1.time.of.day)
Fixed coefficients
 coef exp(coef) se(coef) z p
SPECIESflavipes -0.97516716 0.3771293 0.31923006 -3.05 0.0023
MASS.g -0.07118842 0.9312864 0.05916841 -1.20 0.2300

Random effects
 Group Variable Std Dev Variance
 T1.time.of.day Intercept 0.26328661 0.06931984

	
	

284	

Repeatabilities
Repeatabilities are used to determine whether a sequence of measurements or values
are showing a tendency towards similarity or 'repeatableness' within groups. One of the
classic areas in which repeatability is used is when determining whether bird nestlings
within nests are showing repeatability for a given trait, such as mass, haemoglobin,
parasite load or similar. Another field where repeatability might be used would be to run
animals through several behavioural tests, maybe days or weeks apart, to see whether
there is repeatability at the level of the individual animal in terms of its response (i.e.
lizard response to a novel object).

In this example, however, we will be using nestlings, as we have a nestling dataset
available.

Import the dataset swallow-nestlings-blood.csv (remembering to change your
working directory if needed). This is an actual dataset from an honours project.

nestlings <- read.table('swallows-nestlings-blood.csv',
header=T,sep=',')

Check the data:
head(nestlings)
str(nestlings)

There may be missing data because this is a real dataset and sometimes birds escape
before they are fully measured. A quick but drastic way to remove all lines that have
missing data uses this code:

nestlings<-na.omit(nestlings)

We'll use a repeatability library to calculate repeatabilities.

install.packages("rptR")
library(rptR)

	

	
	

285	

Repeatability: Normal distribution of response
The rptR package allows for determining repeatability of Gaussian (normal), Binary,
Proportion and Poisson distributed response data. The following code will generate a
bootstrapped repeatability for a Gaussian distributed variable. Here, we will check
whether Hct is repeatable by nest.

rpt(Hct ~ (1|NEST.ID), grname="NEST.ID", datatype="Gaussian",
data=nestlings)
	

	
	
Not that the datatype options are "Gaussian", "Binary", "Proportion" and
"count" (i.e. not binomial or poisson, and count is with a lower case 'c').

A repeatability can be read something like a correlation coefficient, with high values
indicating a strong degree of repeatability. The repeatability for Hct by nest is 0.408 and
it is significantly different to a repeatability of zero (P < 0.001). Note that the 95%
confidence interval runs from 0.318 to 0.489. Because it does not include zero, we can
state with a 95% level of confidence that the repeatability is not zero.

Adjusting for uneven sample size
When the number of samples per group is uneven some authors like to apply a penalty
to the repeatability value to take into account that unbalanced sample sizes introduce
additional uncertainty into the data. This is called a repeatability adjustedment (n0). This
quote from Nakagawa & Schielzeth (Repeatability for Gaussian and non-Gaussian data: a
practical guide for biologists; 2010) explains the underlying reasoning:

The correction term n0 is equal to the sample size per individual if sample sizes are
equal for all groups, but n0 is lower than the average sample size if sample sizes
vary among individuals. This downward correction accounts for the overestimation
of variance among smaller groups compared to larger groups that is a characteristic
of least-squares estimation such as ANOVA

RESULT

Repeatability for NEST.ID
R = 0.408
SE = 0.043
CI = [0.318, 0.489]
P = 3.35e-19 [LRT]
 NA [Permutation]

	
	

286	

There is no library that compute the n0, so we have to calculate it using some coding:

compute n0, the repeatability adjustment

n <- as.data.frame(table(nestlings$NEST.ID))
k <- nrow(n)
N <- sum(n$Freq)
n0 <- (N-(sum(n$Freq^2)/N))/(k-1)
n0
	

	
	
The next step is to use the n0 to adjust the repeatability measurement we obtained
above.

compute the adjusted repeatability
R <- 0.408
Rn <- R/(R+(1-R)/n0)
Rn
	

The adjustment has actually increased the repeatability. We can take this to indicate that
there is no particular problem with uneven sample sizes in this dataset. If the
repeatability was substantially decreased, we might wish to interpret the result with
some caution. Note that if you do have even sample sizes (i.e. the same number of
nestlings in all nests) then this final adjustment step is not necessary.

	 	

RESULT

[1] 3.29088

RESULT

[1] 0.6940061

	
	

287	

Repeatability: Others distribution of response
In order to check repeatability of other types of distribution, we would simply change the
distribution parameter:

Poisson (counts)
rpt(RESPONSE ~ (1|GROUP), grname = "GROUP",
datatype="count",data=nestlings)

Binomial (binary)
rpt(RESPONSE ~ (1|GROUP), grname = "GROUP",
datatype="Binary",data=nestlings)

Proportion (percentages)
rpt(RESPONSE ~ (1|GROUP), grname = "GROUP",
datatype="Proportion",data=nestlings)	

The rptR package actually allows for some quite sophisticated models to be tests for
repeatability. Use the ?rpt command and scroll down to the examples provided to get
a feel for the variety and types of models that can be accommodated.

	

	
	

288	

Species Accumulation Curves
The concept behind a species accumulation curve (SAC) is actually quite straightforward.
Imagine you were hired to go into a forest and count all the species of frogs. Each day
you go out, looking for more frog species. To start with you would get one, two or three
new species each day, but over time you'd find fewer and fewer new species. Eventually
you'd be looking for a few days, or a week or a month and not find any new species. At
this point, we can probably assume you've found all or most of the frog species in the
forest. This doesn't necessarily mean you've found all the species. Some might be cryptic
and hard to see. Some might be inactive at the time of year you are looking. However,
broadly speaking we can build a curve from the number of new species you find each
day, and check where it levels out to get an estimate of how many species are probably
present.

Assumptions & Data Set-up
Species accumulation curves do not have any testable assumptions per se, but they can
provide meaningless or misleading results if the experimental design is faulty. The most
common reason for faulty design is sampling across a clear, heterogeneous boundary.
What might cause such a boundary? Imagine you are identifying frog species, and you
are collecting data over several weeks. If it was dry for most of the time, and then it rains
for three days, then returns to dry weather, you could easily find that there is a clear
difference between frogs that you identified during the dry and wet weather. The same
could happen if you cross a geographic boundary. If you are running transects through
forest, then cross into a swamp, the species assortment would probably suddenly jump.

Mostly, avoiding problems of heterogeneity is a matter of good design and thinking
carefully about field sites. When you come to plotting the data, a heterogeneous
boundary will be obvious as a 'jump' in the data. If the curve is smooth, and then jumps
or kinks upwards you may have a heterogeneity problem. How to cope with this is trickier.
To some degree, methods like the random bootstrapping approach smooth out these
kinks and assume the whole environment is homogeneous, and is some instances this
may actually be acceptable. Otherwise, it may be necessary to split the data (i.e. wet and
dry days, forest and swamp transects).

Gradual changes across a sampling range are less problematic than sudden jumps,
although keep in mind that by applying a species accumulation curve you are assuming
that the environment does represent a coherent whole. It may be possible to run a
transects 3km up a mountainside and see only gradual changes in species assortment,
but it would still be questionable whether or not such a dataset might be better split into
altitudinal regions. The clearest indicator that you are running collection through several
different and gradually changing environments is that you will not see a levelling out of
the curve. It will just continue to increase. Imagine if you ran a sample all the way across
a continent. It's quite possible the curve would never really level out, because you are
always encountering new species.

	
	

289	

Measuring Effort
Species accumulation curves require some sort of index of effort. This could be quadrats
along one or more transect lines, or days spent looking for frogs, or number of new
species per individual counted (i.e. new frog species per frog).

In the example we'll look at the data was collected in Borneo, examining morphotypes
of understory plants. The data was collected in six transects through the rainforest with
nine quadrats per transect. The biologists were interesting in identifying whether there
might be a change in species richness near the tourist boardwalks in Mulu Forest Park.
To this end, they positioned Quadrat 1 (1x1m) immediately next to the boardwalk, and
then ran a transect at a right angle into the forest, so that Quadrat 9 was always the
furthest quadrat and always the same distance into the forest.

We will import quite a few datasets. The first dataset records presence and absence of a
species in a given quadrat.

borneo <- read.table('borneo_binary.csv',header=T, sep = ',')	
View(borneo)

This is not easily used for species accumulation curves, because the quadrat and transect
will require extra coding to get around. Instead we'll just delete those columns and work
with a matrix of the data.

borneo <- read.table('borneo_presabs.csv',header=T, sep = ',')
View(borneo)

We've also added the occurrences together and grouped these by quadrat:

borneo.out <- read.table(borneo_away_fr_boardwalk.csv',header=T,
sep = ',')

And split these by transect:

transect1 <- read.table('borneo_transect1.csv',header=T, sep = ',')
transect2 <- read.table('borneo_transect2.csv',header=T, sep = ',')
transect3 <- read.table('borneo_transect3.csv',header=T, sep = ',')
transect4 <- read.table('borneo_transect4.csv',header=T, sep = ',')
transect5 <- read.table('borneo_transect5.csv',header=T, sep = ',')
transect6 <- read.table('borneo_transect6.csv',header=T, sep = ',')

Finally, because we are interested in whether there may be a different pattern if we
reverse the data (i.e. flip the transects and run them from the forest towards the
boardwalk) we have an inverted dataset as well:

borneo.in <- read.table('borneo_towards_boardwalk.csv',header=T,
sep = ',')
	 	

	
	

290	

Most of the code we will be using is from the vegan package, so you will need to load it
now if you don't have it already installed and loaded.

install.packages("vegan")
library(vegan)

Let's start by applying some different methods for generating species accumulation
curves. The method collector will add data in the order it was collected. The method
random is a form of bootstrapping and adds data in a random order. The method exact
finds the expected mean species richness and will only work if the data is in a
presence/absence format (the other methods will accept accumulated species counts).
The method coleman finds the expected species richness following Coleman et al.
(1982) and rarefaction finds the mean when accumulating individuals instead of
sites. If you data is already presented in the form of new species per individual, then you
have already set it up as a rarefaction analysis by default.

Let's work with the presence/absence data first.
sp1 <- specaccum(borneo, "random")
sp2 <- specaccum(borneo, "collector")
sp3 <- specaccum(borneo, "exact")
sp4 <- specaccum(borneo, "coleman")
sp5 <- specaccum(borneo, "rarefaction")

Graphing species accumulation curves

par(mfrow=c(5,1)) # Run this one line at a time

plot(sp1)
mtext("Random", side = 3, adj = 0, cex = 1, col = "black")

plot(sp2)
mtext("Collector", side = 3, adj = 0, cex = 1, col = "black")

plot(sp3)
mtext("Exact", side = 3, adj = 0, cex = 1, col = "black")

plot(sp4)
mtext("Coleman", side = 3, adj = 0, cex = 1, col = "black")

plot(sp5)
mtext("Rarefaction", side = 3, adj = 0, cex = 1, col = "black")

	 	

	
	

291	

	
	

292	

Graphing species accumulation curves: adding colour

Let's try adding some colour and creating some nicer looking graphs.

par(mfrow=c(5,1))

plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0,
ci.col="lightblue")
mtext("Random", side = 3, adj = 0, cex = 1, col = "black")

plot(sp2, ci.type="poly", col="blue", lwd=2, ci.lty=0,
ci.col="lightblue")
mtext("Collector", side = 3, adj = 0, cex = 1, col = "black")

plot(sp3, ci.type="poly", col="blue", lwd=2, ci.lty=0,
ci.col="lightblue")
mtext("Exact", side = 3, adj = 0, cex = 1, col = "black")

plot(sp4, ci.type="poly", col="blue", lwd=2, ci.lty=0,
ci.col="lightblue")
mtext("Coleman", side = 3, adj = 0, cex = 1, col = "black")

plot(sp5, ci.type="poly", col="blue", lwd=2, ci.lty=0,
ci.col="lightblue")
mtext("Rarefaction", side = 3, adj = 0, cex = 1, col =
"black")

	
	

	
	

293	

	
	

	
	

294	

The species accumulation curves are looking quite nice, but we have a problem, which
is that R thinks the whole 6 transects by 9 quadrats is a single collecting event, giving
over 50 samples. We can sum the species observations together, and organise them by
transects, but if we do this the method exact will no longer work. That's okay, as we
will focus on using the methods random and collector from here on.

Let's start off by comparing transects.

Using the random method (by transect)

RANDOM

par(mfrow=c(3,2))

sp1 <- specaccum(transect1, "random")
plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0,
ci.col="lightblue", ylim=c(0,25))
mtext("Transect 1", side = 3, adj = 0, cex = 1, col = "black")

sp1 <- specaccum(transect2, "random")
plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0,
ci.col="lightblue", ylim=c(0,25))
mtext("Transect 2", side = 3, adj = 0, cex = 1, col = "black")

sp1 <- specaccum(transect3, "random")
plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0,
ci.col="lightblue", ylim=c(0,25))
mtext("Transect 3", side = 3, adj = 0, cex = 1, col = "black")

sp1 <- specaccum(transect4, "random")
plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0,
ci.col="lightblue", ylim=c(0,25))
mtext("Transect 4", side = 3, adj = 0, cex = 1, col = "black")

sp1 <- specaccum(transect5, "random")
plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0,
ci.col="lightblue", ylim=c(0,25))
mtext("Transect 5", side = 3, adj = 0, cex = 1, col = "black")

sp1 <- specaccum(transect6, "random")
plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0,
ci.col="lightblue", ylim=c(0,25))
mtext("Transect 6", side = 3, adj = 0, cex = 1, col = "black")
	
	 	

	
	

295	

Using the collector method (by transect)

COLLECTOR
par(mfrow=c(3,2))

sp1 <- specaccum(transect1, "collector")
plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0,
ci.col="lightblue", ylim=c(0,25))
mtext("Transect 1", side = 3, adj = 0, cex = 1, col = "black")

sp1 <- specaccum(transect2, "collector")
plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0,
ci.col="lightblue", ylim=c(0,25))
mtext("Transect 2", side = 3, adj = 0, cex = 1, col = "black")

sp1 <- specaccum(transect3, "collector")
plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0,
ci.col="lightblue", ylim=c(0,25))
mtext("Transect 3", side = 3, adj = 0, cex = 1, col = "black")

sp1 <- specaccum(transect4, "collector")
plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0,
ci.col="lightblue", ylim=c(0,25))
mtext("Transect 4", side = 3, adj = 0, cex = 1, col = "black")

sp1 <- specaccum(transect5, "collector")
plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0,
ci.col="lightblue", ylim=c(0,25))
mtext("Transect 5", side = 3, adj = 0, cex = 1, col = "black")

sp1 <- specaccum(transect6, "collector")
plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0,
ci.col="lightblue", ylim=c(0,25))
mtext("Transect 6", side = 3, adj = 0, cex = 1, col = "black")
	
	
	 	

	
	

296	

Using the random method:

	
	
	
	 	

	
	

297	

Using the collector method:

	

What we are primarily interested in here is whether there are any large jumps or kinks in
the data. There are a couple places where there seem to be jumps, but there is nothing
consistent, and given the coarse granularity of the transect (just nine quadrats) some
jumpiness is to be expected.

	 	

	
	

298	

Let's now look at all transects combined. We'll add some additional estimates to the
graphs, focusing on the data as it was collected, moving from the boardwalk into the
rainforest.

par(mfrow=c(2,1))

sp1 <- specaccum(borneo.out, "random")

plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0,
ci.col="lightblue")

boxplot(sp1, col="yellow", add=TRUE, pch="+")

mtext("Random", side = 3, adj = 0, cex = 1, col = "black")

sp1 <- specaccum(borneo.out, "collector")

plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0,
ci.col="lightblue", ylim=c(0,45))

mod1 <- fitspecaccum(sp1, "lomolino") # collector

plot(mod1, add = TRUE, col=2, lwd=2)

mtext("Collector with Lomolino Model Fitted", side = 3, adj = 0, cex
= 1, col = "black")
	

	
	

299	

	

The original question was one of examining whether there is a difference in curves when
the data is reversed (i.e. would moving towards the boardwalk produce a different curve
to that generated by moving away from the boardwalk).

	 	

	
	

300	

We'll produce use the random method to generate graphs showing the error around the
curve as well as all the curves generated by bootstrapping. We'll append the collector
curve to the end along with an estimated species curve based on a Lomolino model.

	
	
	 	

	
	

301	

Examining the plots, what we can immediately see is the direction of collection makes
no difference to the random models, and the Lomolino model fitted to the collector
method is the same also. This shouldn't be surprising as the methods we are using are
intended to overcome some of the problems of local heterogeneity in a generally uniform
environment (no biological systems are perfectly uniform, so small scale or local
heterogeneity has to be something that can be managed by these methods).

But, the actual collector curves are quite different. It looks very much like there might be
something going on in terms of differences in species richness near and far away from
the boardwalks.

The species accumulation curves won't allow us to easily examine this. Instead we'll
need to take some different approaches.

Using the rarefy method
We can use rarefaction to identify how many species we would expect to obtain for a
given number of plants counted. I'm going to use a basis of 20 plants counted (half of
the 40 species), although you can play with values of 5, 10, 30 or more. Once you reach
40+ plants counted you should start to see the numbers of predicted species flattening
out.

rar <- rarefy(borneo.out, 20)
rar

You can interpret this to mean, that for all of the first quadrats combined (closest to
boardwalk) the number of species you should expect to obtain for 20 plants counted is
15.7. For quadrat 2 you should expect 15.0 species per 20 plants etc.

You can plot this too:

par(mfrow=c(1,1))
plot(rar)
	

RESULT

[1] 15.66952 15.03077 15.92464 12.95323 10.97026 15.21481
12.09091 12.00000 14.47619
attr(,"Subsample")

	
	

302	

	
	

Shannon's Diversity Index
There are some other indicators of interest too. We can use package vegan to obtain
Shannon's Diversity index (a measure of entropy or degree of 'surprise' at finding a new
species). Species richness is easily done in Excel just by summing rows, and I've already
done this in the borneo.richness.csv.
	
div <- diversity(borneo.out)
div
plot(div)
	
	

	
	
	 	

	
	

303	

Species Richness
Species richness is easily done in Excel just by summing rows, and I've already done this
in the borneo.richness.csv.

borneo.summary <- read.table('borneo_richness.csv',header=T, sep = ',')
borneo.summary

Let's now generate indices for each quadrat on the transects and add these back into the
richness dataset.

library(vegan)

rar <- rarefy(borneo.out, 20)
borneo.summary$RAR.OUT <- rar

rar <- rarefy(borneo.in, 20)
borneo.summary$RAR.IN <- rar

div <- diversity(borneo.out)
borneo.summary$DIV.OUT <- div

div <- diversity(borneo.in)
borneo.summary$DIV.IN <- div

borneo.summary
	
	 	

RESULT

> borneo.summary
 QUADRAT AWAY.BOARDWALK TOWARDS.BOARDWALK
1 1 28 21
2 2 26 19
3 3 25 22
4 4 25 27
5 5 24 24
6 6 27 25
7 7 22 25
8 8 19 26
9 9 21 28

	
	

304	

	
	
	 	

RESULT

> borneo.summary
 QUADRAT AWAY.BOARDWALK TOWARDS.BOARDWALK
1 1 28 21
2 2 26 19
3 3 25 22
4 4 25 27
5 5 24 24
6 6 27 25
7 7 22 25
8 8 19 26
9 9 21 28

 RAR.OUT RAR.IN DIV.OUT DIV.IN
1 15.66952 14.47619 2.898746 2.582424
2 15.03077 12.00000 2.791295 2.302014
3 15.92464 12.09091 2.844305 2.323397
4 12.95323 15.21481 2.546117 2.826944
5 10.97026 10.97026 2.339936 2.339936
6 15.21481 12.95323 2.826944 2.546117
7 12.09091 15.92464 2.323397 2.844305
8 12.00000 15.03077 2.302014 2.791295
9 14.47619 15.66952 2.582424 2.898746

	
	

305	

And we can generate some figures to examine the trends. We should see an mirror
opposite of figures here, because all we have done is flip the data.

par(mfrow=c(3,2))

plot(AWAY.BOARDWALK~QUADRAT,data=borneo.summary)
abline(lm(AWAY.BOARDWALK~QUADRAT,data=borneo.summary), lwd=2,
col="red")
mtext("Richness: From boardwalk to forest (Out)", side = 3,
adj = 0, cex = 1, col = "black")

plot(TOWARDS.BOARDWALK~QUADRAT,data=borneo.summary)
abline(lm(TOWARDS.BOARDWALK~QUADRAT,data=borneo.summary),
lwd=2, col="red")
mtext("Richness: From forest to boardwalk (In)", side = 3, adj
= 0, cex = 1, col = "black")

plot(RAR.OUT~QUADRAT,data=borneo.summary)
abline(lm(RAR.OUT~QUADRAT,data=borneo.summary), lwd=2,
col="red")
mtext("Estimated species per 20 counted: Out", side = 3, adj =
0, cex = 1, col = "black")

plot(RAR.IN~QUADRAT,data=borneo.summary)
abline(lm(RAR.IN~QUADRAT,data=borneo.summary), lwd=2,
col="red")
mtext("Estimated species per 20 counted: In", side = 3, adj =
0, cex = 1, col = "black")

plot(DIV.OUT~QUADRAT,data=borneo.summary)
abline(lm(DIV.OUT~QUADRAT,data=borneo.summary), lwd=2,
col="red")
mtext("Shannon Diversity: Out", side = 3, adj = 0, cex = 1,
col = "black")

plot(DIV.IN~QUADRAT,data=borneo.summary)
abline(lm(DIV.IN~QUADRAT,data=borneo.summary), lwd=2,
col="red")
mtext("Shannon Diversity: In", side = 3, adj = 0, cex = 1, col
= "black")
	
	

	
	

306	

	

In a sense, the mirror reflection is a bit redundant. All we are really interested in is
whether there is a trend across the transects. We can use straightforward regression
analysis to obtain P-values also.

	
	

307	

FINAL GRAPHS
par(mfrow=c(3,1))

plot(AWAY.BOARDWALK~QUADRAT,data=borneo.summary)
abline(lm(AWAY.BOARDWALK~QUADRAT,data=borneo.summary), lwd=2,
col="red")
mtext("Richness: From boardwalk to forest (Out)", side = 3,
adj = 0, cex = 1, col = "black")

plot(RAR.OUT~QUADRAT,data=borneo.summary)
abline(lm(RAR.OUT~QUADRAT,data=borneo.summary), lwd=2,
col="red")
mtext("Estimated species per 20 counted: Out", side = 3, adj =
0, cex = 1, col = "black")

plot(DIV.OUT~QUADRAT,data=borneo.summary)
abline(lm(DIV.OUT~QUADRAT,data=borneo.summary), lwd=2,
col="red")
mtext("Shannon Diversity: Out", side = 3, adj = 0, cex = 1,
col = "black")

The following code can be used to run some straightforward regression analyses.

summary(lm(AWAY.BOARDWALK~QUADRAT,data=borneo.summary))
summary(lm(RAR.OUT~QUADRAT,data=borneo.summary))
summary(lm(DIV.OUT~QUADRAT,data=borneo.summary))
	
	

	
	

308	

	
	
	
	
	 	

	
	

309	

Conditional inference trees
Conditional inference trees (CIFs) are a useful way to identify complex relationships in
data, especially where there may be several interactions at work. CIFs have some
advantages over other methods:

• Any type of data can be used for the response variable (no assumptions)
o Although transformed response data will sometimes be easier to read

• Any type of data can be used for the explanatory variables (no assumptions)
• Any number of explanatory variables can be used (impossible to over-parameterise)

Conditional inference trees examine all possible splits in a response variable by all
possible combinations of predictor variables and then nominates a split in the data that
best maximises within group homogeneity and between group variance. The split is
tested against a significance level, and if the split is non-significant, the CIF returns a
non-significant result (a single boxplot). If the split satisfies the significance level
(usually either P < 0.1 or P < 0.05) then the data is re-examined for further splitting and
the process is repeated. This process is called binary recursive partitioning.

Here is the basic formula for a CIF:

library(party)

agilis.tree <- ctree(HABITAT~ PRED1 + PRED2 + PRED3,
data=agilis,control = ctree_control(mincriterion = 0.9))
plot(agilis.tree)

You can look at the model by writing:
agilis.tree	

You can adjust the significance level by changing mincriterion = 0.9. What happens
if you change the mincriterion = 0.9 to 0.8, 0.5 or 0.1?

There is no limit to the number of predictors you can include (although not all of them
will make it into the model as a significant effect). Using the table on the next page as a
guide, have a go at running CIFs looking at various response variables (small mammal
abundance) using various predictor variables.

If you find that one predictor variable (like HABITAT) is dominating the trees you are
constructing, try removing it and re-running the trees to see what happens.

Also, what happens when you nominate HABITAT as the response variable?

	
	

310	

VARIABLES YOU MAY WISH TO EXAMINE
sqrtAGILIS Abundance of all agile antechinus
sqrtF Abundance of all female antechinus
sqrtM Abundance of all male antechinus
sqrtFUSCIPES Abundance of bush rats
sqrtLUTREOLUS Abundance of swamp rats
sqrtSWAINSONII Abundance of dusky antechinus
sqrtMUSCULUS Abundance of feral domestic mice
sqrtRATTUS Abundance of feral black rats

VARIABLES YOU MAY WISH TO USE AS PREDICTORS
YEAR Year in which the data was collected
HABITAT Was the forest fragmented (F) or continuous (C)?
MONTH What month was the data collected in (1 = Jan, 12 = Dec)
sqrtFOX Index of fox activity at site
total.ABH Total area at breast height of trees
ABH.m2 Mean area at breast height of trees
median.ABH Median area at breast height of trees
TREE.SPECIES Species richness of trees
STUMPS Number of stumps in 20x20 quadrates (400m2)
DOMINANCE Dominance index applied to shrub species
EVENNESS.W Wilson's evenness index applied to shrub species
median.DBH Median diameter at breast height of trees
SHRUB.COUNT Number of shrubs counted in 20x20 quadrates (400m2)
SHRUB.SPECIES Species richness of shrubs
BROWSE Index of browsing pressure at site (higher = more browsing)
WOODY.DEBRIS Number of logs counted in 20x20 quadrates (400m2)
pcDEAD Percentage of trees that were dead and standing
pcNONEUC Percentage of trees that were not Eucalyptus
CANOPY Index of canopy. 0 = none. 5 = heavy.
MIDSTOREY Index of midstorey. 0 = none. 5 = heavy.
UNDERSTOREY Index of understorey. 0 = none. 5 = heavy.
GROUNDCOVER Index of groundcover. 0 = none. 5 = heavy.
LEAF.LITTER Index of leaf litter. 0 = none. 5 = heavy.
BRACKEN Was bracken 0 absent, 1, present, 2, dominant?
SLOPE Was there a slope at the site? 1=Y 0 =N
RIDGE Was there a ridge at the site? 1=Y 0 =N
GULLY Was there a gully at the site? 1=Y 0 =N
ALT.m Altitude of site above sea level
LAT.DEC Decimal latitude of site
LONG.DEC Decimal longitude of site
	
	
	

	
	

311	

Example of a conditional inference tree (with interpretation)
	
agilis.tree <- ctree(sqrtAGILIS~ BRACKEN + LEAF.LITTER,
data=agilis,control = ctree_control(mincriterion = 0.9))

agilis.tree

plot(agilis.tree)
	
	

	
Figure	X.	Conditional	inference	tree	of	agile	antechinus	total	abundance	as	a	function	of	Bracken	and	
Leaf	Litter.	In	sites	with	little	bracken	(index	<	0.5)	agile	antechinus	abundances	were	higher	(Node	

2,	n	=	24).	In	sites	where	bracken	was	more	dominant	(index	>	0.5)	leaf	litter	influences	agile	
antechinus	abundances.	Sites	with	higher	bracken	indices	and	less	leaf	litter	had	the	lowest	agile	
antechinus	abundances	(Node	4,	n	=	72).	In	sites	with	high	bracken	indices	but	also	high	leaf	litter	

indices,	agile	antechinus	abundance	was	higher	(Node	5,	n	=	24).

RESULT
 Conditional inference tree with 3 terminal nodes

Response: sqrtAGILIS
Inputs: BRACKEN, LEAF.LITTER
Number of observations: 120

1) BRACKEN <= 0.5; criterion = 1, statistic = 18.693
 2)* weights = 24
1) BRACKEN > 0.5
 3) LEAF.LITTER <= 3.5; criterion = 0.998, statistic = 10.736
 4)* weights = 72
 3) LEAF.LITTER > 3.5
 5)* weights = 24

	
	

312	

Random Forests
Random Forests is a model averaging technique based on Conditional Inference trees
(above). A Random Forests analysis bootstaps a random set of variables from your set of
predictors and tries to build a Conditional Inference Tree using this subset. It then saves
the tree, bootstaps another set of variables, and tries to build a second tree, a third and
so on. As a default, we usually aim for about 10,000 trees (which can take a while to run
depending on the data and your computer). The actual test output is straightforward and
elegant. Once all of the trees have been generated, the test counts up the number of
times any given variable was used to construct a tree. If a variable has been used more
frequently it is probably more important for predicting the response variable. This allows
the test to work out a set of relative importances for the predictors involved.

Some random forests basics:

• Random forests analysis requires one response and any number of predictors
• You can't over-fit or over-parametize the model-selection process
• Correlation of predictors is not a concern
• Will accept any type(s) of data including categorical, binomial, continuous etc

Load libraries
library(party)

Load data
agilis <- read.table('agilis-abundance.csv', header=T,sep=',')

agilis <-na.omit(agilis)

str(agilis)	

Decide on your response and predictors.

Response: sqrtAGILIS	
Predictors ABH.m2	
 SHRUB.COUNT
 WOODY.DEBRIS
 LEAF.LITTER
 pcNONEUC
 ALT.m
	

	
	

313	

Set some controls for the Random Forests process:

data.controls <- cforest_control(ntree=10000, mtry=3, replace =
FALSE)

The above controls are instructing R how many trees to build (10000), how many
variables to select for each tree (3) and whether to replace variables back into the 'bag'
after they have been picked (i.e. can a variable be picked twice so that the random
assortment is smaller than it would otherwise be?) (FALSE = No replacement).

Standard advice is to set the mtry to the square root of the number of predictors. We
have six predictors, which gives a square root of 2.49, which we will round up to 3. The
default is 5.

Set a seed. Any random number will do:
set.seed(42)	

Now, build a model using the following code:
fit.cforest <- cforest(sqrtAGILIS ~ ABH.m2 + SHRUB.COUNT +
WOODY.DEBRIS + LEAF.LITTER + pcNONEUC + ALT.m, controls =
data.controls, data=agilis)

The order of predictor variables doesn't matter.

Now generate the relative importances for the variables. Using conditional = TRUE
is less biased than the default (leaving out this command) but is also computationally
intensive. Have a go at running the following code, but if it takes more than about 5min
cancel the operation by clicking on the red stop sign in R Studio, and re-run the code
without the conditional = TRUE operator.

With conditional = TRUE
fit.varimp <- varimp(fit.cforest, conditional = TRUE)
	
Without conditional = TRUE	
fit.varimp <- varimp(fit.cforest)

If you were preparing data for a scientific paper or a presentation it would be appropriate
to run the data using the conditional = TRUE operator. This may require you to run
the test overnight or get access to a powerful computer.

On the assumption that you probably don't want to wait 15 to 30 min to test this code,
I've continued using the test without the conditional = TRUE operator.

	
	

314	

You can look at the relative importances as a set of numbers, but these numbers have no
units and on their own they are not very meaningful. It is more sensible to present them
graphically:

fit.varimp
	

	
	
	
dotchart(sort(fit.varimp)

	
	

RESULT

 ABH.m2 SHRUB.COUNT WOODY.DEBRIS
 -1.952247e-06 -2.959465e-05 2.072595e-05
 LEAF.LITTER pcNONEUC ALT.m
 4.546654e-03 7.789202e-04 1.452086e-02

	
	

315	

dotchart(sort(fit.varimp), pch = 16,
xlab="Variable Importance\n(values to right of dashed vertical
line are meaningful as predictors)")
abline(v=abs(min(fit.varimp)), col='red', lty='longdash',
lwd=2)

	

The same data can be presented as a barplot (overpage).

	
	

316	

barplot(sort(fit.varimp), horiz=TRUE,
xlab="Variable Importance\n(values to right of dashed vertical
line are meaningful as predictors)")
abline(v=abs(min(fit.varimp)), col='red', lty='longdash',
lwd=2)
abline(v=0, col="black") # to add a line at zero
	

	

The above results suggest that Altitude of sites, Leaf Litter and percentage of non-
Eucalyptus trees at sites are all important for explaining the abundance of agile
antechinus. This is telling us the importance of these variables but we don't know
anything about the direction of effect. Often when using Random Forests it is useful to
include a graph showing the non-parametric correlation coefficients or some boxplots as
well.

	

	
	

317	

Structural Equation Modelling (Pathway Analysis)
Structural Equation Modelling is a way to test complex webs of positive and negative
relationships for parsimony and significance. It allows for you to compare one theoretical
'structure' or 'web' of relationships with a second or third theoretical web of relationships
and identify which pattern of relationships is best supported by the data. If you are
interested in Structural Equation Modelling you should consider obtaining and reading
Bill Shipley's Cause and Correlation in Biology. It is an easy to read, persuasive and
interesting book focusing on how causal relationships might be identified in a tangle of
correlational data.

Useful things about SEM
Allows for comparing complex relationships: biology is a complicated world full of
interactions and variables feeding back on each other. SEM allows you to examine a
whole set of interacting variables in one go, instead of piecemeal.
Arguably allows for inferences about cause and effect: this is more contentious, but at
least some writers argue that SEM can allow correlational data to be investigated in a
way that allows cause and effect to be unravelled. More typically, the view is that cause
and effect cannot be shown without a controlled experiment, but the view that SEM
provides some insight into cause and effect is becoming more widely accepted.

Considerations when using SEM
• Latent to observed ratio: A model needs to have at least 3 observed variables per 1 latent

variable. Solutions include:
o Add observed variable(s) or remove latent variable(s) (preferable)
o Constrain two latent variables so that they have the same loading (less preferable)

• Endogenous latent variables: An endogenous latent variable will probably need three or
more predictors (exogenous observed) variables contributing to explaining it. Otherwise,
there may not be enough information to allow the model to predict the latent variabe.

• Degrees of Freedom: It is easy to saturate a SEM by including too many estimated parameters
(latent variables and correlational lines) and too few observed variables (the actual observed
data series). You will be warned by R if your degrees of freedom are negative and the model
will refuse to build. In this situation, consider removing unobserved variables and/or lines
of causal influence from the model.

• Negative variance: Problems that can occur is that if you force two highly correlated
variables to be non-correlated. This can generate negative variance which can cause the
model to collapse.

• Covariance of predictors: As with all linear models, covarying predictors can cause issues
when building pathway models.

• Normality of response variables: Problems with normality of endogenous variables can cause
issues with the model building.

Terminology: One minor issue (but a confusing one) is that latent variables (unmeasured variables)
are called 'factors' in the pathway analysis and SEM literature. In the following we use 'latent variable'
only and avoid using 'factor' to avoid confusion, but if you are reading reviews or help articles on SEM
keep in mind that the word 'factor' may not mean a categorical variable with levels, but rather may
mean 'an unmeasured variable'.

	
	

318	

The main package used for SEM in R is sem and it contains most of the functions we will
use here.

Load libraries
install.packages("sem")
library(sem)

Load data
agilis <- read.table('agilis-morphometrics.csv',
header=T,sep=',')

We are going to have a go at taking the example conceptual flow diagram proposed by
Johnstone et al. (2011) (shown earlier in this document) and turning it into a SEM for
analysis. The original diagram is shown on the following page.

We need to take the diagram and turn it into a form that can be used as a template to
construct a SEM in R. There are a number of variables, such as covariance values, that
are not considered in the diagram as it was published, but which need to be taken into
account.

If you are doing this step with your own data you can either write the diagram down on
a piece of paper or create it inside a simple graphics program like Powerpoint or Keynote.

Also, a note to the wise. Structural Equation Models are sometimes viewed as a magic
wand by biologists who hope these models can demonstrate causal relationships among
complex variables including some that were not measured. As we are going to see,
building Structure Equation Models is not straightforward. Often it is better to start small
and apply a SEM process to just a part of an overall theory that makes good biological
sense. In the end, only experience building SEMs will allow you to construct these models
without (as many) problems.

	
	

319	

The original form of the conceptual flow diagram we'll work with:
	

	
	
Figure X. Conceptual flow diagram of the main results. There are well established associations
between anthropogenic habitat fragmentation and the creation of novel edge habitat, habitat
change and habitat area reduction [3]. Associations supported by significant findings are
indicated by *. Findings that are significant, but may be confounded by an interaction, are
indicated by ^. Grey arrows indicate a theoretical mechanism by which an association could be
operating.

Johnstone CP, Lill A, Reina RD - PLoS ONE (2011)

Pictorial representations used for SEM have a standard set of symbols and are called Path
Diagrams. For this reason, SEM is also sometimes called pathway analysis. Before looking
at how to create a path diagram, it is useful to define some terms (based on David A.
Kenny, 2011):

• Observed Variable: a variable that has been measured
• Latent Variable: a variable that has not been measured
• Exogenous Variable: a variable that is not caused by another variable. Exogenous

variables can cause one, two or more endogenous variables.
• Endogenous Variable: a variable that is caused by another variable. Endogenous

variables can also cause other endogenous variables. e.g. in a very simple example
where habitat degradation causes increased predator activity causes decrease in small
mammal abundance, habitat degradation is exogenous, predator activity is
endogenous and small mammal abundance is also endogenous.

• Structural Coefficient: a measure of change in the effected variable given one unit
of change in the causal variable and no change in any other variable. This can be
thought of as similar to a regression coefficient, although it is not always
estimable using multiple regression.

• Disturbance: Equivalent to error in linear equations. This is the amount of change
in an effected variable that is not attributable to any variables in the equation.
Usually each endogenous variable will have a Disturbance.

• Structural Model: The total set of structural equations merged into a model of
cause and effect.

	
	

320	

Creating a path diagram: step 1
The first step is to work out what variables are Observed and what variables are Latent
in the conceptual flow diagram. Although in the original 2011 published study the
perimeter and area of forest fragments were measured, we will treat this as if they were
not measured so that we can illustrate how to include Latent variables.

• Anthropogenic habitat fragmentation Observed
• Proportion of Edge Habitat Latent
• Habitat Degradation Latent
• Area of Fragment Observed
• Core area of fragment Latent
• Female antechinus abundance Observed
• Female antechinus stress metric Observed (N:L ratio)
• Simpson's diversity index for shrub species Observed
• Shrub Count Observed
• Percentage of non-Eucalyptus trees Observed
• Woody debris (logs) Observed
• Total agile antechinus abundance Observed
• Fat reserves Observed (mass)
• Regenerative anaemia Observed (RBC)
• per capita Food resources Latent

Where N:L ratio is the ratio of neutrophils to lymphocytes in circulating peripheral blood
and MSR is mass-size residuals in grams.

We're going to change the model slightly. Instead of predicting lower female abundance
in edge than interior habitat in fragments, we will predict that there is lower female
abundance in fragments due to an area effect. All continuous forest will be set to having
an 'area' of 1000 ha, although this is really just functioning as an arbitrary dummy value
because the areas of continuous forest were 10,000 ha or more. Additionally, although
the researchers originally used Shannon's diversity index for shrubs, we will use
Simpson's diversity index instead. These two indices should roughly agree, so we
shouldn't expect this to be a serious deviation from the original theory outlined in the
conceptual flow diagram.

• Anthropogenic habitat fragmentation FRAGMENTATION
• Proportion of Edge Habitat Latent
• Habitat Degradation Latent
• Area of Fragment AREA.ha
• Core area of fragment Latent
• Sex of antechinus SEX
• Total, F & M Antechinus abundance at site AGILIS, AGILIS.F, AGILIS.M
• Female antechinus stress metric NL
• Simpson's diveristy index for shrub species SIMSPONS.DIVERSITY
• Shrub Count SHRUBS.COUNT
• Percentage of non-Eucalyptus trees pcNONEUC
• Woody debris (logs) WOODY.DEBRIS
• Fat reserves MASS
• Regenerative anaemia RBC
• per capita Food resources Latent

	
	

321	

Creating a path diagram: step 2
We can now create the basic path diagram. Here are some basic rules to help keep the
path diagram interpretable:

• Causal arrows start at the cause and end at the effect
• Double arrows are used to show feedback or mutual cause
• Observed variables are placed in boxes
• Latent variables are placed in ovals or circles

The following diagram uses the title names for variables in the file agilis-
morphometrics.csv. In the original study Mass-size residuals were used to estimate fat
reserves of antechinus and haemoglobin hematocrit residuals were used to estimate a
condition call regenerative anaemia. We'll use much rougher but also simpler estimates.
For an estimate of fat reserves we'll just use the mass (g) of the animals. For an estimate
of regenerative anaemia we'll just use red blood cell count per litre.

Note also that we think there might be a causal effect of Edge Habitat on Degradation,
both of which are unobserved, or latent variables.

	
	
	
	

	

	
	

322	

Creating a path diagram: step 3
However, the model is not complete yet. To be able to write out the model in equation
form we need to create (arbitrary) names for the causal arrows (red) and a Disturbance
variables (blue).

Rules for labelling causal arrows and disturbances

• Each endogenous variable receives disturbance
• Exogeneous variables do not receive disturbance
• Names for arrows are arbitrary (but a notation of lam1, lam2, lam3 is typical)
• At least one arrow leading away from a latent variable should be set to 1 to help

us identify the scale of the corresponding latent variable

First, we'll add the names for the pathways. Note that for each latent variable one of the
causal arrows leading away from the latent variable is not given a name. Instead it is set
to a value of 1.
	

	
	
The next step is not strictly necessary for R, but it is useful to do simply to help us
remember that all endogenous variables have a disturbance. Disturbance can be thought
of as similar to error in a standard variance model: that is, the amount of unexplained
variation left over once the variance due to the predictors of interest has been
established.

On the next page the same diagram is shown, but with disturbances shown in blue. The
disturbances are numbered so that we can remember that the disturbance affecting one
variable is not affecting another variable.

	
	

323	

	
Rules for labelling causal arrows and disturbances

• A double-headed arrow (reciprocal causality) cannot be applied to an endogenous
variable

• Instead, the arrow is drawn between the disturbances of the two variables

We don't have an example of two endogenous variable mutually causing each other, but
if we thought that pcNONEUC and SHRUBS.COUNT (for example) were casually
influencing each other (that is the percentage of non-eucaluptus trees influnced shrubs
numbers, and shrub numbers influenced the number of non-eucalyptus trees) then we
would draw a double-headed arrow between the disturbances of pcNONEUC and
SHRUBS.COUNT.

	
	
	
	

	
	

324	

The Reticular Action Model (RAM)
The above step can (arguably) be skipped if you are comfortable with structural equations
in R because R uses the Reticular Action Model (RAM) notation, which simplifies the
process. You don't need to distinguish between disturbance error and measurement error.
These are the notations used:

A -> B Causal effect of A on B
A <-> B Covariance A and B
A <-> A If A is endogenous: the disturbance (error) associated with A
A <-> A If A is exogenous: the measurement error associated with A

These four notations make up all the possible relationships in the pathway structure.

Creating a structural model
We now have enough information to start building a model. Specifying a model uses the
specify.model() code in package sem. You need to type out each relationship,
including the covarying relationships. WARNING: This is the step that usually creates the
most problems. Forgetting a double arrow or getting a name wrong will cause substantial
issues. We also need to define some arbitrary names for the latent variables at this stage.
It's best to keep the names short but clear. I've decided to use the following:

• Proportion of Edge Habitat Latent EDGE
• Habitat Degradation Latent DEG
• Core area of fragment Latent CORE
• per capita Food resources Latent FOOD

And we need to assign pathway labels to the error effects. Remember that there is no
need to distinguish between measurement error (of indictor / exogenous variables) and
disturbance error (of response / endogenous variables), so all variables receive a similar
error pathway.

	
	

325	

	
	

	
	

326	

Before creating a model, we want to remove rows where there is missing data.
Remember, this is a drastic way to handle missing values but sometimes it is the only
feasible way to clean up a dataset. Load data (if you haven't already)

agilis <- read.table('agilis-morphometrics.csv',
header=T,sep=',')	

Remove missing values
agilis <- na.omit(agilis)	

The model specification code is as follows:
model.fit <- specifyModel()
1: FRAGMENTATION -> EDGE, lam1, NA
2: FRAGMENTATION -> DEG, lam3, NA
3: FRAGMENTATION -> CORE, lam2, NA
4: EDGE -> AGILIS.F, NA, 1
5: EDGE -> NL, lam4, NA
6: EDGE -> DEG lam5, NA
7: DEG -> SIMPSONS.DIVERSITY, NA, 1
8: DEG -> SHRUBS.COUNT, lam7, NA
9: DEG -> pcNONEUC, lam8, NA
10: DEG -> WOODY.DEBRIS, lam9, NA
11: SIMPSONS.DIVERSITY -> RBC, lam10, NA
12: SHRUBS.COUNT -> RBC, lam11, NA
13: pcNONEUC -> RBC, lam12, NA
14: WOODY.DEBRIS -> RBC, lam13, NA
14: CORE -> AGILIS, NA, 1
15: AGILIS -> FOOD, lam16, NA
16: CORE -> FOOD, lam17, NA
17: FOOD -> MASS, NA, 1
18: SEX -> NL, lam6, NA
19: SEX -> RBC, lam14, NA
20: SEX -> MASS, lam15, NA
21: FRAGMENTATION <-> FRAGMENTATION, e1, NA
22: EDGE <-> EDGE, e2, NA
23: NL <-> NL, e3, NA
24: AGILIS.F <-> AGILIS.F, e4, NA
25: DEG <-> DEG, e5, NA
26: CORE <-> CORE, e6, NA
27: AGILIS <-> AGILIS, e7, NA
28: SIMPSONS.DIVERSITY <-> SIMPSONS.DIVERSITY, e8, NA
29: SHRUBS.COUNT <-> SHRUBS.COUNT, e9, NA
30: pcNONEUC <-> pcNONEUC, e10, NA
31: WOODY.DEBRIS <-> WOODY.DEBRIS, e11, NA
32: FOOD <-> FOOD, e13, NA
33: MASS <-> MASS, e14, NA
34: RBC <-> RBC, e15, NA
35: SEX <-> SEX, e16, NA

IMPORTANT: The next step is creating a covariance matrix. The covariance matrix should
include all measured variables. If a variable is named in the model specification (above)
but is not in the covariance matrix R will assume it is a latent (unmeasured) variable. This
will be true for misspelling or case errors. If you call a variable WOODYDEBRIS in the
model and WOODY.DEBRIS in the covariance matrix R will not be able to identify these
as the same variable. Take care!

	
	

327	

Creating a covariance matrix: step 1
We need to create a covariance matrix cor all observed variables. The latent variances
and the disturbance variables do not need to be included, and as we do not have data
for them anyway they could not be included in this matrix.

This is a lazy workaround to set up a dataset that entirely consists of your variables of
interest and nothing else. Make sure at this point that all your variables are in a numeric
form. If you want to generate covariance matrices using factors, packages for this purpose
do exist but they are outside the scope of this document. The hetcor function in the
polycor package is one place to start if you are interested in generating correlation
matrices using factors. However, for now we will work with the basic R cov function.

Create a dataset using one of the variables…

cov.data <- data.frame(agilis$FRAGMENTATION)
cov.data$FRAGMENTATION <- cov.data$agilis.FRAGMENTATION
head(cov.data) # look at the output to check it is correct

Now we can add all of the other variables of interest.

Now add the other observed variables
cov.data$SIMPSONS.DIVERSITY <- agilis$SIMPSONS.DIVERSITY
cov.data$SHRUBS.COUNT <- agilis$SHRUBS.COUNT
cov.data$pcNONEUC <- agilis$pcNONEUC
cov.data$WOODY.DEBRIS <- agilis$WOODY.DEBRIS
cov.data$AGILIS <- agilis$AGILIS
cov.data$SEX <- agilis$SEX
cov.data$NL <- agilis$NL
cov.data$RBC <- agilis$RBC
cov.data$MASS <- agilis$MASS

Creating a covariance matrix: step 2
Now create a covariance matrix using the cov function. Check everything has worked.
Factors or missing values will create problems.

cov.fit <- cov(cov.data)
cov.fit

COUNTING ROW NUMBERS
Generating a SEM requires entering the number of observations. The easiest way to do
this is either embed nrow(your.data) in the appropriate place in the dataset or use
the following code to count the rows and assign them to a variable called n.

n <- nrow(cov.data)
n

	
	

328	

Fitting the model
You can now fit the final model. Use the following code:

model.sem <- sem(model.fit, cov.fit, n)

You will receive the following error message. What went wrong?

> model.sem <- sem(model.fit, cov.fit, n)
Error in 1:m : NA/NaN argument
In addition: Warning messages:
1: In sem.semmod(model.fit, cov.fit, n) :
 The following observed variables are in the input covariance or raw-moment matrix
but do not appear in the model:
agilis.FRAGMENTATION

2: In sem.default(ram, S = S, N = N, raw = raw, data = data, pattern.number =
pattern.number, :
 S is numerically singular: expect problems
3: In sem.default(ram, S = S, N = N, raw = raw, data = data, pattern.number =
pattern.number, :
 S is not positive-definite: expect problems

The first warning about agilis.FRAGMENTATION can be ignored. That is just a
consequence of the way we built a correlation structure.

The second two error messages are more serious and actually the model has not been
built as all as a consequence. S is the covariance matrix, so we appear to have problems
with the fundamental model.

The largest problem with SEM is inexperience with modelling leading to construction of
an inappropriate model. Looking at the model more carefully, we might have done a
good job of mimicking our original conceptual flow diagram, but we have done a poor
job of creating a model that can be analysed. There are three obvious problems:

• Too many latent variables
• Too few measured predictors feeding into latent variables
• Maybe a problem with normality of endogenous variables?

We want a ratio of no less than 3:1 measured to latent (unmeasured variables). We have
four latent variables and 12 measured variables. This is exactly a 3:1 ratio which is
borderline in terms of model creation.

An even bigger problem is that we have only one or two arrows from measured variables
feeding into each latent variable. A minimum of three arrows per latent variable is
needed in most models. This also raises some questions around why we even need the
latent variables. If FRAGMENTATION is the only variable predicting the unmeasured
EDGE variable, then why include EDGE at all? Surely FRAGMENTATION would be just as
good a predictor for downstream effects (and in this case better because we measured
FRAGMENTATION).

	
	

329	

Regarding the final point, if you try to fit a model and it collapses one thing to remember
is that this is a form of linear modelling. The response (endogenous) variables may need
to be transformed for normality.
Here's a new path diagram with the (in this case rather meaningless) latent variables
removed:
	

	
	
	
To be on the safe side we might as well apply a transformation to all of the response
variables we are using as well. We'll use the (rather drastic) Rank Normal transformation
from package GenABEL.

library(GenABEL)

agilis$rnAGILIS.F <- rntransform(agilis$AGILIS.F)
agilis$rnAGILIS <- rntransform(agilis$AGILIS)
agilis$rnRBC <- rntransform(agilis$RBC)
agilis$rnMASS <- rntransform(agilis$MASS)
agilis$rnNL <- rntransform(agilis$NL)
head(agilis)	
	
	
	

	
	

330	

This will vastly simplify the model but to make it even easier let's start by focusing down
on just a part of the model. We'll start with the variables that predict MASS (without SEX).

model.fit <- specifyModel()
FRAGMENTATION -> rnAGILIS, lam7, NA
FRAGMENTATION -> rnMASS, lam8, NA
FRAGMENTATION -> rnNL, lam2, NA
rnAGILIS -> rnMASS, lam16, NA
FRAGMENTATION <-> FRAGMENTATION, e1, NA
rnAGILIS <-> rnAGILIS, e4, NA
rnMASS <-> rnMASS, e5, NA
rnNL <-> rnNL, e3, NA

Load library semPlot so we can draw an attractive plot:

install.packages("semPlot")
library(semPlot)

Fit the model, check the paths and the summary. Instead of counting the n and working
out a covariance matrix we will pass the data directly to the sem function.

model.sem<-sem(model.fit, data=agilis)
semPaths(model.sem)
summary(model.sem)
	

	
	
	

RESULT

> summary(model.sem)

 Model Chisquare = 0 Df = 0 Pr(>Chisq) = NA
 AIC = 12
 BIC = 0

 Normalized Residuals
 Min. 1st Qu. Median Mean 3rd Qu. Max.
-1.313e-15 -1.114e-15 -3.744e-16 -4.118e-16 0.000e+00 3.916e-16

 R-square for Endogenous Variables
rnAGILIS rnMASS
 0.3443 0.0457

 Parameter Estimates
 Estimate Std Error z value Pr(>|z|)
lam7 -1.2053537 0.11762323 -10.2475816 1.213416e-24 rnAGILIS <--- FRAGMENTATION
lam8 -0.1617666 0.17000527 -0.9515385 3.413311e-01 rnMASS <--- FRAGMENTATION
lam16 -0.2435273 0.08275803 -2.9426422 3.254243e-03 rnMASS <--- rnAGILIS
e1 0.2509453 0.02509453 10.0000000 1.523971e-23 FRAGMENTATION <--> FRAGMENTATION
e4 0.6943769 0.06943769 10.0000000 1.523971e-23 rnAGILIS <--> rnAGILIS
e5 0.9511424 0.09511424 10.0000000 1.523971e-23 rnMASS <--> rnMASS

 Iterations = 0

	
	

331	

	

This is a fairly simple model but it does capture one part of our overall theory. Now, we'll
try adding NL to the model using the transformed rnNL variable.

	
	

332	

model.fit <- specifyModel()
FRAGMENTATION -> rnAGILIS, lam7, NA
FRAGMENTATION -> rnMASS, lam8, NA
FRAGMENTATION -> rnNL, lam2, NA
rnAGILIS -> rnMASS, lam16, NA
FRAGMENTATION <-> FRAGMENTATION, e1, NA
rnAGILIS <-> rnAGILIS, e4, NA
rnMASS <-> rnMASS, e5, NA
rnNL <-> rnNL, e3, NA

model.sem<-sem(model.fit, data=agilis)
semPaths(model.sem)
	

	

So far so good but if we try adding any more variables the model collapses. Let's have a
look at constructing another part of the model.

	
	

333	

model.fit <- specifyModel()
FRAGMENTATION -> SIMPSONS.DIVERSITY, lam3, NA
FRAGMENTATION -> SHRUBS.COUNT, lam4, NA
FRAGMENTATION -> pcNONEUC, lam5, NA
FRAGMENTATION -> WOODY.DEBRIS, lam6, NA
FRAGMENTATION <-> FRAGMENTATION, e1, NA
SIMPSONS.DIVERSITY <-> SIMPSONS.DIVERSITY, e8, NA
SHRUBS.COUNT <-> SHRUBS.COUNT, e9, NA
pcNONEUC <-> pcNONEUC, e10, NA
WOODY.DEBRIS <-> WOODY.DEBRIS, e11, NA

model.sem<-sem(model.fit, data=agilis)
semPaths(model.sem)
	

	

Let's have a go at adding the next set of associations through to RBC.
	

	
	

334	

model.fit <- specifyModel()
FRAGMENTATION -> SIMPSONS.DIVERSITY, lam3, NA
FRAGMENTATION -> SHRUBS.COUNT, lam4, NA
FRAGMENTATION -> pcNONEUC, lam5, NA
FRAGMENTATION -> WOODY.DEBRIS, lam6, NA
SIMPSONS.DIVERSITY -> rnRBC, lam10, NA
SHRUBS.COUNT -> rnRBC, lam11, NA
pcNONEUC -> rnRBC, lam12, NA
WOODY.DEBRIS -> rnRBC, lam13, NA
FRAGMENTATION <-> FRAGMENTATION, e1, NA
SIMPSONS.DIVERSITY <-> SIMPSONS.DIVERSITY, e8, NA
SHRUBS.COUNT <-> SHRUBS.COUNT, e9, NA
pcNONEUC <-> pcNONEUC, e10, NA
WOODY.DEBRIS <-> WOODY.DEBRIS, e11, NA
rnRBC <-> rnRBC, e6, NA

model.sem<-sem(model.fit, data=agilis)
semPaths(model.sem)

	
	

335	

You can use the following commands to look at the hypothesis tests, standardized
coefficients (loadings) and residuals of the model.

Hypothesis tests

summary(model.sem)

RESULT

Model Chisquare = 45.53198 Df = 7 Pr(>Chisq) = 1.078023e-07
 AIC = 73.53198
 BIC = 8.40885

 Normalized Residuals
 Min. 1st Qu. Median Mean 3rd Qu. Max.
-2.52100 -0.06109 0.00000 0.13090 0.53980 3.18300

 R-square for Endogenous Variables
SIMPSONS.DIVERSITY SHRUBS.COUNT pcNONEUC WOODY.DEBRIS rnRBC
 0.0028 0.0173 0.3306 0.0612 0.1723

 Parameter Estimates
 Estimate Std Error z value Pr(>|z|)
lam3 -1.707283e-02 2.296528e-02 -0.74341927 4.572279e-01 SIMPSONS.DIVERSITY <--- FRAGMENTATION
lam4 -2.097423e+01 1.119060e+01 -1.87427198 6.089295e-02 SHRUBS.COUNT <--- FRAGMENTATION
lam5 -3.102159e-01 3.121163e-02 -9.93911169 2.813246e-23 pcNONEUC <--- FRAGMENTATION
lam6 4.485230e+00 1.242693e+00 3.60928380 3.070436e-04 WOODY.DEBRIS <--- FRAGMENTATION
lam10 -5.657973e-03 3.996601e-01 -0.01415696 9.887048e-01 rnRBC <--- SIMPSONS.DIVERSITY
lam11 -1.380908e-03 8.163211e-04 -1.69162380 9.071773e-02 rnRBC <--- SHRUBS.COUNT
lam12 -1.098146e+00 2.439994e-01 -4.50061045 6.775858e-06 rnRBC <--- pcNONEUC
lam13 -3.480869e-02 7.238257e-03 -4.80898803 1.516963e-06 rnRBC <--- WOODY.DEBRIS
e1 2.509453e-01 2.509453e-02 10.00000000 1.523971e-23 FRAGMENTATION <--> FRAGMENTATION
e8 2.646991e-02 2.646991e-03 10.00000000 1.523971e-23 SIMPSONS.DIVERSITY <-->
 SIMPSONS.DIVERSITY
e9 6.285151e+03 6.285151e+02 10.00000000 1.523971e-23 SHRUBS.COUNT <--> SHRUBS.COUNT
e10 4.889246e-02 4.889246e-03 10.00000000 1.523971e-23 pcNONEUC <--> pcNONEUC
e11 7.750619e+01 7.750619e+00 10.00000000 1.523971e-23 WOODY.DEBRIS <--> WOODY.DEBRIS
e6 8.470803e-01 8.470803e-02 10.00000000 1.523971e-23 rnRBC <--> rnRBC

 Iterations = 0

	
	

336	

Standard coefficients

stdCoef(model.sem)

Residuals

residuals(model.sem)

RESULT

 Std. Estimate
lam3 lam3 -0.0524951989 SIMPSONS.DIVERSITY <--- FRAGMENTATION
lam4 lam4 -0.1313822351 SHRUBS.COUNT <--- FRAGMENTATION
lam5 lam5 -0.5749995324 pcNONEUC <--- FRAGMENTATION
lam6 lam6 0.2472884193 WOODY.DEBRIS <--- FRAGMENTATION
lam10 lam10 -0.0009112061 rnRBC <--- SIMPSONS.DIVERSITY
lam11 lam11 -0.1091651121 rnRBC <--- SHRUBS.COUNT
lam12 lam12 -0.2933772703 rnRBC <--- pcNONEUC
lam13 lam13 -0.3126355591 rnRBC <--- WOODY.DEBRIS
e1 e1 1.0000000000 FRAGMENTATION <--> FRAGMENTATION
e8 e8 0.9972442541 SIMPSONS.DIVERSITY <--> SIMPSONS.DIVERSITY
e9 e9 0.9827387083 SHRUBS.COUNT <--> SHRUBS.COUNT
e10 e10 0.6693755377 pcNONEUC <--> pcNONEUC
e11 e11 0.9388484377 WOODY.DEBRIS <--> WOODY.DEBRIS
e6 e6 0.8277231049 rnRBC <--> rnRBC

RESULT

 FRAGMENTATION SHRUBS.COUNT WOODY.DEBRIS pcNONEUC SIMPSONS.DIVERSITY rnRBC
FRAGMENTATION 0.000000e+00 0.0000000 4.440892e-16 0.000000e+00 -8.673617e-19 0.099834579
SHRUBS.COUNT 0.000000e+00 0.0000000 1.636113e+02 -3.863186e+00 9.510381e-01 -1.458133590
WOODY.DEBRIS 4.440892e-16 163.6113144 1.421085e-14 -3.793072e-01 5.650461e-02 0.190282885
pcNONEUC 0.000000e+00 -3.8631856 -3.793072e-01 1.387779e-17 -4.595932e-03 0.018563895
SIMPSONS.DIVERSITY -8.673617e-19 0.9510381 5.650461e-02 -4.595932e-03 -3.469447e-18 0.001766858
rnRBC 9.983458e-02 -1.4581336 1.902829e-01 1.856389e-02 1.766858e-03 -0.025005818

	
	

337	

From the above models we can see that Fragmentation did have a significant effect on
the percentage of non-Eucalyptus trees, the shrubs count and the woody debris but had
no effect on diversity of shrubs (measured by Simpson's diversity). Of these
environmental variables, only percentage of non-Eucalyptus trees and woody debris had
an effect on RBC.

It is also possible to look at the total, direct and indirect effects in a sem:

Direct and indirect effects

effects(model.sem)

For all of the above outputs a lot of cleaning up will be needed before the results are fit
for a results table. However there is a lot of interesting information here and there is a
possibility that genuine complex relations and indirect causal chains might be
illuminated using this method.

RESULT

Total Effects (column on row)
 FRAGMENTATION SHRUBS.COUNT WOODY.DEBRIS pcNONEUC SIMPSONS.DIVERSITY
SIMPSONS.DIVERSITY -0.01707283 -1.004635e-20 0.000000e+00 0.000000 0.000000000
SHRUBS.COUNT -20.97422680 -1.110223e-16 0.000000e+00 0.000000 0.000000000
pcNONEUC -0.31021587 -2.172013e-18 -1.895620e-17 0.000000 0.000000000
WOODY.DEBRIS 4.48522998 3.112253e-17 0.000000e+00 0.000000 0.000000000
rnRBC 0.21359749 -1.380908e-03 -3.480869e-02 -1.098146 -0.005657973

	
	

338	

You can also compare two models to check which is more parsimonious. The standard
anova code for model comparison works for sems. Here is an example:

model1.fit <- specifyModel()
FRAGMENTATION -> SIMPSONS.DIVERSITY, lam3, NA
FRAGMENTATION -> SHRUBS.COUNT, lam4, NA
FRAGMENTATION -> pcNONEUC, lam5, NA
FRAGMENTATION -> WOODY.DEBRIS, lam6, NA
SIMPSONS.DIVERSITY -> rnRBC, lam10, NA
SHRUBS.COUNT -> rnRBC, lam11, NA
pcNONEUC -> rnRBC, lam12, NA
WOODY.DEBRIS -> rnRBC, lam13, NA
FRAGMENTATION <-> FRAGMENTATION, e1, NA
SIMPSONS.DIVERSITY <-> SIMPSONS.DIVERSITY, e8, NA
SHRUBS.COUNT <-> SHRUBS.COUNT, e9, NA
pcNONEUC <-> pcNONEUC, e10, NA
WOODY.DEBRIS <-> WOODY.DEBRIS, e11, NA
rnRBC <-> rnRBC, e6, NA

model2.fit <- specifyModel()
FRAGMENTATION -> SHRUBS.COUNT, lam4, NA
FRAGMENTATION -> pcNONEUC, lam5, NA
FRAGMENTATION -> WOODY.DEBRIS, lam6, NA
SHRUBS.COUNT -> rnRBC, lam11, NA
pcNONEUC -> rnRBC, lam12, NA
WOODY.DEBRIS -> rnRBC, lam13, NA
FRAGMENTATION <-> FRAGMENTATION, e1, NA
SHRUBS.COUNT <-> SHRUBS.COUNT, e9, NA
pcNONEUC <-> pcNONEUC, e10, NA
WOODY.DEBRIS <-> WOODY.DEBRIS, e11, NA
rnRBC <-> rnRBC, e6, NA
SIMPSONS.DIVERSITY <-> SIMPSONS.DIVERSITY, e8, NA

model1.sem<-sem(model1.fit, data=agilis)
model2.sem<-sem(model2.fit, data=agilis)

anova(model.1.sem, model.2.sem)

anova(model1.sem,model2.sem)
LR Test for Difference Between Models

 Model Df Model Chisq Df LR Chisq Pr(>Chisq)
model1.sem 7 45.532
model2.sem 9 46.084 2 0.55211 0.7588

Important: to be able to compare models both models must have the same set of variables
so that the covariance matrices can be compared.

	
	

339	

Finally, it is worth noting that the semPaths plotting package can do some nice things
in terms of layout. Here are some useful options:
	
semPaths(model.sem, what = "std", layout = "tree")

semPaths(model.sem, what = "std", layout = "circle")

	
	

340	

semPaths(model.sem, what = "std", layout = "circle", fade=FALSE)

semPaths(model.sem, what = "std", layout = "circle",
fade=FALSE,nodeLabels=letters[1:6])

	

	
	

341	

semPaths(model.sem, what = "std", layout = "tree2",
fade=FALSE,nodeLabels=letters[1:6])

semPaths(model.sem, what = "std", layout = "circle2",
fade=FALSE,nodeLabels=letters[1:6])

	
	

342	

What are the take-home messages for pathway analyses?

• If you are going to use structural equation models you'll need to
develop a good understanding of what you are doing.

• Start with smaller models first and build onto them.
• Don't try to throw everything into a model all at once.
• Remember to be careful with how many latent (unmeasured) variables

you include (if any).
• Ensure that your models are biologically meaningful.

	
	

343	

	

Likelihoods, log likelihoods & AICs
First off, let's start getting into some definitions:

Q. What is the difference between a probability and a likelihood?

Most people who are learning statistics are surprised to learn that statistics is not
monolithic. There are competing theories and competing ways to applying statistical
analysis to a set of data to obtain some sort of idea about what the data means.

Science is primarily about looking for patterns or regularities in nature and the universe
and constructing theories about these patterns. We want our theories to be predicative
and we test them to check if they are. For some reason, this seems to work. We don't
know why the universe should be regular or have repeatable laws, but it seems to.

Deep time evolution can be taken as evidence supporting the idea that the universe, and
importantly for us, biological systems, function in repeatable ways that have predictable
patterns. If there were no predictable patterns, evolution would not function as a process.
In particular, convergent evolution implies that there are biological pressures that select
for a trait, and because the selection pressure is consistent, the trait confers an advantage
in the future.

Not all selection pressures are consistent though. Some selection pressures seem to have
come and gone. Large, piercing teeth was seemingly an advantage for mammal predators
from the Miocene to the Pleistocene, but no modern predators sport these huge teeth
and we don't know why they were selected for convergently in both sparassodonts (close
relatives of marsupials) and eutherians (felids in particular).

To discuss different theories about how patterns is nature are best understood, we need
to return to some terminology we learnt at the beginning of the semester.

Parameters
The actual descriptive values for the whole population

(mean, variance etc).

Statistics
The descriptive values we have obtained by sampling the population

(mean, variance etc).

Outcomes
The actual discrete data values obtained by sampling.

	
	

344	

Thylacosmilus atrox (A South American close relative of marsupials)

Smilodon fatalis (A North American eutherian felid)

We'll use the word 'odds' in its conventional sense to explain this. So far through most
of this semester we have been discussing probabilities. The probability gives the odds of
an event given the parameters. This is written in an equation form like this:

P(x | θ)

P = Probability
x = The outcomes or 'statistics', which is the data obtained
| = given
θ = The parameters of the population
	

	
	

345	

Because we can obtain probabilities, and by sampling from a population repeatedly,
eventually arrive at a probability that is fairly 'stable' we consider a probability to be
something that is knowable.

We cannot sample the entire population in most instances, and so for this reason the
parameters are never definitely knowable, but, assuming the sampling from a population
is random and unbiased we can estimate the parameters.

When attempting to estimate parameters we start to talk about likelihoods instead of
probabilities. A likelihood gives the odds of the parameters given the outcomes
(statistics). In a sense, we're trying to work backwards, and are thinking about: what is
the likelihood of parameters being X is the outcomes (statistics) are x? Likelihood is
written like this in an equation form:

L(θ | x)

L = Likelihood
x = The outcomes or 'statistics', which is the data obtained
| = given
θ = The parameters of the population

If sampling is random and unbiased then we can estimate the likelihood (unknown)
from the probability (known). This is called the likelihood function.

L(θ | x) = P(x | θ)

There are some statisticians who argue that this estimation is invalid because it is making
assumptions about the relationship between the statistics and parameters that can never
actually be known. Increasingly, however, most scientists now accept that as long as we
acknowledge that the likelihood is only an estimate, this approach is acceptable.

Maximum likelihood estimation (ML)
Maximum likelihood estimation is a method that can be used to estimate the parameters
of a population given the outcomes (statistics) assuming a given hypothesis is true. The
mathematics of how ML estimation works are beyond the scope of this course. In a
practical sense the 'hypothesis' will be the set of predictors you have included in a model
and their relationships with each other (+ or *).

In essence, maximum likelihood estimation picks values for the parameters that
maximise the likelihood function. An intuitive way to think about this is that ML
estimation picks values for the parameters that maximise the agreement between the
observed data (the outcomes or statistics) and the hypothesized model.

	
	

346	

A maximum likelihood function will range from 0 to 1, where 1 is a perfect model fit.

If you want to compare models to decide which hypothesized model best fits the
observed data outcomes, you need to use ML

Restricted maximum likelihood estimation (REML)
Restricted maximum likelihood estimation is similar to maximum likelihood estimation,
except that it uses a likelihood function generated from transformed values so that
'nuisance' parameters have no effect on the estimated parameters values.

An typical example of a nuisance parameter is the variance, which we are not usually
interested in. More often we are interested in the means of groups, because we are
interested in whether groups may have different or the same means.

Note though that variance in not always a nuisance parameter. For example, in
evolutionary biology and examination of fitness we are often interested in the variance
rather than the means of seed production among species or populations. If you want to
test variances you often need to use very specific statistical approaches, because most
approaches assume that variance is of little or no interest.

The mathematics underlying REML is beyond the scope of this course. The important
thing to know about REML is that:

You cannot use REML to compare models

REML is better than ML if you want to look at the P values for predictors in a model

	

	
	

347	

Can we select the best model and then look at its P values?
Really, really, no. The problem is that this would be like having your cake and eating it
too. Through a process of comparing models we have already picked the model that
represents a hypothesis that best fits the observed data. Interpreting P values is not really
sensible because 1) it would be a surprise if the P values were not significant, and 2) we
interpret P values when we are trying to falsify a bold prediction about data that has not
been collected yet. By constructing the best possible model from a set of data and then
testing P values we would be strongly biasing significance.

Remember that falsification is intended to get around the problem of induction. If we
collect data, then use induction (which model selection falls broadly within) to build the
best model, and then take P values from the best model, what we have done is build a
hypothesis (model) from the data we have, and then test the hypothesis (model) using
the data that was used to construct the model.

That would be highly circular. So how is model selection used and reported then? We
use Information Criteria to pick the best model and the best model (and those that are
nearly as good) are presented as the best explanations for the data.

Before looking at Information Criterion, however, let's look at Log Likelihood.

	
	

348	

Q. What is a log likelihood? Why are log likelihoods used?

To explain what a log likelihood is, we need to start by explaining what the likelihood
ratio is. We start with the following Law of Likelihood:

Within the framework of a statistical model, a particular set of data supports
one statistical hypothesis better than another if the likelihood of the first
hypothesis given the data exceeds the likelihood of the second hypothesis
given the data.

This can be written as so:

	

The likelihood of the hypothesis given the outcomes in the data is assumed to be same
as the probability of the outcomes given the hypothesis (assuming random and unbiased
sampling). If we were interested in testing a null hypothesis this could be rewritten:

	

A log likelihood test is used for model comparison, that is, deciding which model is better
of two (or more) competing models. The test statistic is sometimes called the Support
but is more often termed the Deviance (often denoted as D), and it is calculated:

	
	
It	is	called	a	Deviance	value	because	high	values	indicate	that	the	observed	data	are	strongly	
deviating	from	the	hypothesis	that	is	being	tested.	Low	values	indicate	that	the	observed	data	
is	not	strongly	deviating	from	the	data	being	tested.	Why	do	we	transform	it	by	-2?	And	is	this	
related	to	the	 'tests	of	deviance'	we	have	 looked	at	already?	You	know,	those	generalised	
linear	model	things?	 	

Likelihood ratio =
P(x | H1)

P(x | H2)

Likelihood ratio =
Likelihood given the model of interest

Likelihood given the alternative model

D = -2 * ln
Likelihood given the model of interest

Likelihood given the alternative model ()

	
	

349	

Why do we transform by natural logs and multiply by -2?	
Likelihoods are ratios. They range from 0 to 1, where 1 would be a perfect model fit
where the model perfectly predicts all values of the response. However, working with
ratios is mathematically tricky, and to make ratios easier to work with we log transform
them.

A natural log-transformed (ln) likelihood will range from infinitely negative numbers for
a very poor fit to 0 for a model that perfectly fits all values of the observed response.
This is called the log likelihood (LL).

One further step is applied. Negative numbers are inconvenient to work with, and to
make the log of the likelihood into a positive linear relationship we multiple the log by
-2. After this step a model that perfectly fits the data and predicts all values of the
response perfectly will have a -2*LL of 0, and poor models will have increasingly high
values of -2*LL.

	

	
	

350	

Is this related to a deviance test?
Yes. This is the 'clever maths' that a deviance test uses to take a set of binary or count
data and turn it into a form that can be examined using linear regression, from which P
values can be obtained.

In a generalised linear model, we take advantage of the mathematical property that the
log of a ratio is equal to the log of the first number minus the log of the second number.

	
	

	
	

	

The higher the deviance the lower the goodness of fit of the full model (the model with
all predictors included). The Deviance is then used in a way similar to how the F ratio is
used in an ANOVA.

D = -2 * ln
Likelihood given the model of interest

Likelihood given the alternative model ()

D = -2 * ln
P(x | θ null)

P(x | θ full)
()

A	parameter	for	every	observation

Only	the	parameters	of	interest

The	Deviance	is	the	distance	

from	model	of	interest	to	
everything	fitted

D = -2 * ln (P(x | θ interest)) - ln (P(x | θ full)) ()

	
	

351	

An ANOVA compares residuals in a way that is similar to how a regression model works
except that residuals are taken from the mean of each group rather than across a range
of values. An F-ratio is derived from the variance of the residuals.

F = signal / noise
F = variance between treatments / variance within treatments
F = mean squares of treatment / means squares of the error
F = [sum of squares of treatment / [(T-1)] / [sum of squares of error / (n-1)]

Remember hat the F-ratio is conceptually very similar to the t-value. It is a measure of
the signal to noise in the data. If we view the Deviance as similar to the mean squares of
the error, we can generate a signal to noise ratio and that can be used to generate P
values for predictors in a model.

Q. What is an information criterion? How are information criteria used in model
selection? What does 'most parsimonious' mean?

Information Criterion are used to judge the goodness of fit of a given model. They are
in particular used for comparison among models with differing predictor values.

The Deviance (-2*LL) is a form of Information Criterion where the lower the value the
lower the Deviance of the data from the hypothesis and therefore the better the fit. But
usually, we modify this value to try and judge whether a model is not only a good fit
but a parsimonious fit.

What is meant by parsimony?
 Remember that simple models are always better. Remember also that eventually, just
by adding more and more and more predictors to a model, we will be able to explain
all values of the outcomes because there will be a predictor for every observed data
point. Imagine you have three observations:

 x Predictor 1 Predictor 2 Predictor 3
 31 HIGH 1 20
 5 HIGH 10 19
 17 LOW 3 14

If we used all three predictors, then we could state that x is equal to 17 when Predictor
1 has the factorial value LOW, and x is equal to 5 when Predictor 2 has a high value,
and x is equal to 31 when Predictor 3 has a high value.

	
	

352	

But this model isn't actually useful. It is 'over-parameterised' or 'over-fitted'. We have
added too many predictors, and because we have one predictor per data point we are
explaining everything, and therefore nothing.

A parsimonious model (and by extension a parsimonious hypothesis) is one where the
fewest number of predictors explain the most variation in the observed outcomes.
Information Criterion that attempt to pick the most parsimonious model are trading-off
between perfect explanation of all observed outcomes on one hand and model simplicity
on the other hand. They are attempting to pick an intermediate between explanatory
power and too much complexity.

There are several different commonly used Information Criterion. Akaike Information
Criterion (AIC), Bayesian Information Criterion (BIC) and Deviance Information Criterion
(DIC) are all commonly used and are superficially similar, in that they attempt to estimate
how parsimonious a model is. AICs are the most commonly used of these Information
Criterion, and this statistic works by taking the Deviance and penalising it for additional
predictors.

	

	
	

353	

AIC (Akaike information criterion)

Q. What is an Akaike information criterion? How is it used?

The AIC is usually written as follows:

	

But if we want to look at the logic of how it works, this is easier to understand.

	
-2ln(L) is Deviance. It is the same as -2*LL written differently. The value k is the number
of predictors in the model. To understand why we add the predictors to the Deviance to
penalise the Deviance remember that low values of Deviance imply a high goodness of
fit and high values of Deviance imply a poor goodness of fit.

The decision to add k multiplied by 2 instead of just add k isn't arbitrary. It is based on
information entropy, but getting into an explanation of how exactly we arrive at 2k
instead of understand k is beyond what we can reasonably tackle here.

In principal what this means, is that the Deviance will be calculated for a model and then
it will be penalised for additional predictors. The Deviance will be penalised by two for
one predictor, four for two predictors, six for three predictors and so on. That means that
all else being equal, if two models give the same Deviance, but one model includes more
predictors it will be more heavily penalised.

We take a lower AIC to be evidence of a more parsimonious model, and we usually take
a difference of 2 as evidence that there is a difference between the models. We don't say
'significant' difference because we don't want to confuse AICs with P values. A Bayes
Information Criterion (BIC) is similar but takes sample size into account too.

Bayes Information Criterion (BIC)

	
	
	

	

AIC = 2k – 2ln(L)

AIC = – 2ln(L) + 2k

BIC = – 2ln(L) + k * ln(n)

	
	

354	

AIC & BIC :: R Code

Load libraries

install.packages("nlme")
library(nlme)

Load data
agilis <- read.table('agilis-abundance.csv',
header=T,sep=',')

str(agilis)	

The package nlme provides another way to generate linear mixed effect models. The
advice is that lme4 is more reliable for model comparison, but if we are interested in P
value nlme is easier to use. For most purposes, nlme will be fine for model comparison
too, and it is a bit easier to learn with, so we'll have a go at using it today.

lme1 <- lme(sqrtAGILIS ~ HABITAT * SEX * ABH.m2 * LEAF.LITTER,
random = ~1 | YEAR / MONTH, data=agilis, method="REML")

Remember: use REML if interested in P values and ML if interested in model selection

To use a broadly falsificationist approach, we'd check P values for the fixed effects
(HABITAT, SEX, ABH.m2 and LEAF.LITTER) and calculate the percentage of variance
explain for the random effects (YEAR and SITE) as well as provide an R2 value for the
model as a whole (i.e. how much variation in agile antechinus abundances does the
model explain in total).

P values for the linear mixed effects model:
anova(lme1)
	
The	R2	value	of	the	whole	model:	
(cor(fitted(lme1),getResponse(lme1))^2)
	
Percentage	of	variation	explained	by	the	random	effects:	
VarCorr(lme1)
	
	 	

	
	

355	

Results for a falsificationist approach to a linear mixed effects model
	

	 	

RESULT

> anova(lme1)
 numDF denDF F-value p-value
(Intercept) 1 94 125.24971 <.0001
HABITAT 1 94 30.71766 <.0001
SEX 1 94 7.00872 0.0095
ABH.m2 1 94 0.97497 0.3260
LEAF.LITTER 1 94 1.24246 0.2678
HABITAT:SEX 1 94 2.21283 0.1402
HABITAT:ABH.m2 1 94 0.44223 0.5077
SEX:ABH.m2 1 94 0.42621 0.5154
HABITAT:LEAF.LITTER 1 94 0.03283 0.8566
SEX:LEAF.LITTER 1 94 2.43790 0.1218
ABH.m2:LEAF.LITTER 1 94 4.31845 0.0404
HABITAT:SEX:ABH.m2 1 94 1.03839 0.3108
HABITAT:SEX:LEAF.LITTER 1 94 0.34609 0.5577
HABITAT:ABH.m2:LEAF.LITTER 1 94 0.90513 0.3438
SEX:ABH.m2:LEAF.LITTER 1 94 1.70031 0.1954
HABITAT:SEX:ABH.m2:LEAF.LITTER 1 94 0.73939 0.3920

> (cor(fitted(lme1),getResponse(lme1))^2)
[1] 0.3735033

> VarCorr(lme1)
 Variance StdDev
YEAR = pdLogChol(1)
(Intercept) 0.001125295 0.03354541
MONTH = pdLogChol(1)
(Intercept) 0.001131311 0.03363496
Residual 0.045092472 0.21234988
>

	
	

356	

A model comparison approach to a linear mixed effects model instead

If instead we were going to use a model selection approach, we would construct more
than one model and compare them. Let's make a reduced and full model. The reduce
model will just be additive and won't have any interactions in it.

full.lme <- lme(sqrtAGILIS ~ HABITAT * SEX * ABH.m2 *
LEAF.LITTER, random = ~1 | YEAR / MONTH, data=agilis,
method="ML")

reduced.lme <- lme(sqrtAGILIS ~ HABITAT + SEX + ABH.m2 +
LEAF.LITTER, random = ~1 | YEAR / MONTH, data=agilis,
method="ML")

We can check the log likelihoods and AICs by using the commands:

logLik(full.lme)
logLik(reduced.lme)

AIC(full.lme)
AIC(reduced.lme)

AICs can be negative. This happens if the Deviance (-2*LL) is greater than the number of
predictors multiplied by 2. The interpretation is the same. The lower the AIC, the more
parsimonious the model. Which model is more parsimonious according to the AICs?

Which model is more parsimonious?
	

	
	
The	model	with	 the	 lower	AIC	has	 the	better	parsimony.	 In	 this	case,	 the	 reduced	model.	
Incidentally,	AIC	values	can	be	negative.	You	still	take	the	lowest	(most	negative)	value	if	your	
AICs	are	negative.	
	
	

RESULT

> logLik(full.lme)
'log Lik.' 22.48653 (df=19)

> logLik(reduced.lme)
'log Lik.' 14.63009 (df=8)

> AIC(full.lme)
[1] -6.973065

> AIC(reduced.lme)
[1] -13.26019

	
	

357	

We can also compare models using the anova function:

anova(full.lme, reduced.lme)
	

	
	

Because the Likelihood Ratio Test is the same as the log of likelihood 1 minus the log
of likelihood 2, the L.Ratio is 22.49 - 14.63 = 15.72. The P-value indicates whether
there is a significant difference between the models. Although there is no significant
difference, we would still accept that Model 2 (reduced) is more parsimonious than
Model 1 (full) because the difference in AICs is > 2 (i.e. 13.26 - 6.97 is > 2).

We can compare more than two models in this way. Let's create a another reduced
model where YEAR is removed and we only control for SITE as a random factor.

noyear.lme <- lme(sqrtAGILIS ~ HABITAT + SEX + ABH.m2 +
LEAF.LITTER, random = ~1 | MONTH, data=agilis, method="ML")
	
anova(full.lme, reduced.lme, noyear.lme)

Which model is more parsimonious?
	

	

It is looking as if the reduced model that is also missing Year as a random effect may be
preferable.

But what if we want to compare these models to the null model (with no predictors) and
we want to check all possible combinations of predictors? There is a function called
dredge in the library MuMIn that will do this:

Load libraries

RESULT

 Model df AIC BIC logLik Test L.Ratio p-value
full.lme 1 19 -6.973065 45.98928 22.48653
reduced.lme 2 8 -13.260189 9.03975 14.63009 1 vs 2 15.71288 0.1521

RESULT

> anova(full.lme, reduced.lme, noyear.lme)
 Model df AIC BIC logLik Test L.Ratio p-value
full.lme 1 19 -6.973065 45.98928 22.48653
reduced.lme 2 8 -13.260189 9.03975 14.63009 1 vs 2 15.712876 0.1521
noyear.lme 3 7 -15.179955 4.33249 14.58998 2 vs 3 0.080234 0.7770

	
	

358	

install.packages("MuMIn")
library(MuMIn)

Apply the dredge function to the reduced model (this could take a while…):
dredge(reduced.lme)
	

	
	
The 'global model' is the model that has all variables included (based on what you used
in your model construction). Model numbers are given on the left-hand side and the
variables that are included or not included in each model are shown next. If you were to
present this as a table in a paper you would (usually) only include the models that have
AICs that are within a difference of 2 from the lowest AIC and the global model for
comparison. The table below shows the output reformatted for inclusion in a report.

Table X. Demonstration of how to present model selection results in a table. The table caption
will need to explain that df = degrees of freedom; LL = log likelihood; AICc = corrected AIC; ΔAICc
= delta corrected AIC; w = model weights.

	
Note that we've renamed the models with numbers that make sense given that we've
discarded a lot of the other models. These are models 11, 15 and 12 in the R output. The
most parsimonious mode in the above example is the model that includes the predictors

MODEL PREDICTORS df LL AICc ΔAICc w
1 HABITAT SEX 6 13.5 -14.3 0.0 0.36
2 HABITAT LEAF LITTER SEX 7 14.3 -13.6 0.8 0.24
3 ABH HABITAT SEX 7 13.9 -12.8 1.6 0.16

GLOBAL ABH HABITAT LEAF LITTER SEX 8 14.6 -12.0 2.4 0.11

RESULT

Global model call: lme.formula(fixed = sqrtAGILIS ~ HABITAT + SEX + ABH.m2 +
LEAF.LITTER,
 data = agilis, random = ~1 | YEAR/MONTH, method = "ML")

Model selection table
 (Int) ABH.m2 HAB LEA.LIT SEX df logLik AICc delta weight
11 0.422000 + + 6 13.535 -14.3 0.00 0.355
15 0.268600 + 0.03757 + 7 14.283 -13.6 0.76 0.243
12 0.393000 3.115e-05 + + 7 13.880 -12.8 1.57 0.162
16 0.236900 3.227e-05 + 0.03761 + 8 14.630 -12.0 2.36 0.109
3 0.473300 + 5 10.223 -9.9 4.41 0.039
7 0.318300 + 0.03797 6 10.953 -9.2 5.16 0.027
13 -0.005099 0.09590 + 6 10.744 -8.7 5.58 0.022
4 0.445000 3.057e-05 + 6 10.545 -8.3 5.98 0.018
8 0.289900 3.063e-05 + 0.03777 7 11.253 -7.5 6.82 0.012
14 -0.035160 3.085e-05 0.09603 + 7 11.046 -7.1 7.23 0.010
5 0.046220 0.09590 5 7.599 -4.7 9.65 0.003
6 0.019470 2.891e-05 0.09590 6 7.875 -3.0 11.32 0.001
9 0.314600 + 5 0.225 10.1 24.40 0.000
10 0.286700 3.016e-05 + 6 0.490 11.8 26.09 0.000
1 0.365900 4 -2.432 13.2 27.54 0.000
2 0.338100 2.999e-05 5 -2.183 14.9 29.22 0.000
Random terms (all models):
‘1 | YEAR’, ‘1 | MONTH %in% YEAR’

	
	

359	

HABITAT and SEX only, but models 2 and 3 are not different enough to be considered
unreasonable explanations for the observed data as well. The above example is ignoring
potential interactions in the model.

What happens if you	dredge	the full model we created earlier?	
	
dredge(full.lme)

What happens when you dredge the full model? You should get output that looks
something like this where all possible interaction terms have also been include as
possible variables to include in the model. This is why you would typically only report
the global model, the null model and the top 5-10 models (based on parsimony).
Reporting all models would make for a very large (and not very meaningful) table.
	

	
	

	
	

360	

Corrected AIC

Q. What is a corrected Akaike information criterion? How is it used?

	

The corrected AIC takes into account sample size and is preferable to use when sample
sizes are small, especially less than 10. The dredge function defaults to using cAIC, which
is why the output reads cAIC instead of AIC. The equation uses the number of
observations (n) and number of predictors (k).

A corrected AIC is usually a good choice, but it can under very particular situations
generate a result that is uninterpretable. Work out the corrected AIC for the following
situation.

AIC = 205.1
k = 9

n = 10

What is the corrected AIC for the above?
	

	

What happened in the above example? Well,	n-k-1 is zero, and you can't divide a
number by zero. How would you avoid getting an undefined number for a corrected AIC?
The best option is to be sure that your number of predictors is at least n-2 or lower. i.e.
in the above example, K needed to be 8 predictors or less.

AICc = AIC +
2k (k + 1)

n - k - 1

RESULT

> k=9
> n=10
> 205.1 + (2*k*(k+1))/(n-k-1)
[1] Inf

	
	

361	

Code to generate 'rntransform'
The function 'runtransform' is used a lot in this PDF, but the library GenABEL isn't being
regularly maintained at the point when I'm writing this. If you want to generate the
function, you can run the following code in R (which was simply taken from a working
version of GenABEL, so this should still be cited back to GenABEL).

create ztransform first

ztransform <- function (formula, data, family = gaussian)
{
 if (missing(data)) {
 if (is(formula, "formula"))
 data <- environment(formula)
 else data <- environment()
 }
 else {
 if (is(data, "gwaa.data")) {
 data <- data@phdata
 }
 else if (!is(data, "data.frame")) {
 stop("data argument should be of gwaa.data or data.frame class")
 }
 }
 if (is.character(family))
 family <- get(family, mode = "function", envir = parent.frame())
 if (is.function(family))
 family <- family()
 if (is.null(family$family)) {
 print(family)
 stop("'family' not recognized")
 }
 if (is(try(formula, silent = TRUE), "try-error")) {
 formula <- data[[as(match.call()[["formula"]], "character")]]
 }
 if (is(formula, "formula")) {
 mf <- model.frame(formula, data, na.action = na.pass,
 drop.unused.levels = TRUE)
 mids <- complete.cases(mf)
 mf <- mf[mids,]
 y <- model.response(mf)
 desmat <- model.matrix(formula, mf)
 lmf <- glm.fit(desmat, y, family = family)
 resid <- lmf$resid
 }
 else if (is(formula, "numeric") || is(formula, "integer") ||
 is(formula, "double")) {
 y <- formula
 mids <- (!is.na(y))
 y <- y[mids]
 resid <- y
 if (length(unique(resid)) == 1)
 stop("trait is monomorphic")
 if (length(unique(resid)) == 2)
 stop("trait is binary")
 }
 else {
 stop("formula argument must be a formula or one of (numeric, integer, double)")
 }
 y <- (resid - mean(resid))/sd(resid)
 tmeas <- as.logical(mids)
 out <- rep(NA, length(mids))
 out[tmeas] <- y
 out
}

	
	

362	

create rntransform

rntransform <- function (formula, data, family = gaussian)
{
 if (is(try(formula, silent = TRUE), "try-error")) {
 if (is(data, "gwaa.data"))
 data1 <- phdata(data)
 else if (is(data, "data.frame"))
 data1 <- data
 else stop("'data' must have 'gwaa.data' or 'data.frame' class")
 formula <- data1[[as(match.call()[["formula"]], "character")]]
 }
 var <- ztransform(formula, data, family)
 out <- rank(var) - 0.5
 out[is.na(var)] <- NA
 mP <- 0.5/max(out, na.rm = T)
 out <- out/(max(out, na.rm = T) + 0.5)
 out <- qnorm(out)
 out
}

test it worked on some numbers
rntransform(c(2,3,4,5,10,4,5,3,2,19))

ztransform(c(2,3,4,5,10,4,5,3,2,19))

