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Introduction 
Bio R  

	
Welcome to the Research Methods in Biology (BIO3011) guide to using R to analyse 
biological data. We will be using RStudio during practical demonstrations, but the code 
in this book is set up so that you can also use the basic R program if you need to. 
 
Changing working directory in R 
Immediately on opening R, the first thing you need to do is change your working directory 
to the folder where your data is currently kept. 
Mac: Select 'Misc'  > Change working directory…  
   > navigate to folder where your data is stored (i.e. your csv files) 
 
Windows: Select 'File' > Change dir… 
   > navigate to folder where your data is (i.e. your csv files) 
 
Changing working directory in RStudio 
Changing the working directory in RStudio is the same for Windows and Mac. 
Both: Select 'Session'  > Set working directory > Choose Directory…  
   > navigate to folder where your data is stored (i.e. your csv files) 
 
Create a working R script file 
In RStudio we can create a script file to work from. You also have the option of creating 
an R Workbook (which some people prefer), although we'll start simpler and just work 
with a script file for now. 
 
Select File  > New File  
  > R Script 
 
Then, either click the little blue save disc symbol or select File > Save. Give your R 
script a name and save it where you will be able to find it. It's usually a good idea to 
save your R script in the same folder as your data files. 
 
Colour coding 
Code will be colour coded to make it easier to understand. Orange will be used for 
functions (commands), blue for anything that you can change or name yourself (the 
'moving pieces' of the code, if you like), black for basic syntaxt requirements (arrows, 
brackets, commas mostly), green for comments (R doesn't read anything after a hash 
tag), and purple for libraries. For example:  
 
library(vcd) # you need to install if you don't have it 
attach(skink) # attaches the skink dataset  
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Basic Flow Diagram for Deciding Which Test to Use. 
 

Predictors are also called independent variables. Responses are also called dependent 
variables. 
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Expanded Flow Diagram for Deciding Which Test to Use 
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Expanded Flow Diagram for Deciding Which Test to Use 
 

Mixed Effects models are shaded blue 
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CODE QUICK REFERENCE SHEET 
 
HISTORGRAMS 
hist(yourdata$VARIABLE) 
 
BOXPLOTS 
boxplot(RESP ~ PRED, data = yourdata) 
boxplot(RESP ~ PRED1*PRED2, data = yourdata, las = 2) 
boxplot(RESP ~ PRED, data = yourdata, xlab="xlabel", ylab="ylabel", main="title") 
 
SCATTERPLOTS 
plot(RESP ~ PRED1, data = yourdata) 
abline(lm(RESP~PRED1, data = yourdata)) 
plot(RESP ~ PRED1, data = yourdata, xlab="xlabel", ylab="ylabel", main="title") 
 
STRUCTURE PLOTS INTERACTION PLOT (attach dataset first) 
mosaicplot(your.xtab, shade=T) interaction.plot(XFACTOR, TRACE, RESPONSE) 
 
SUBSETTING & CHANGING INTO A FACTOR 
newdataset <- subset(yourdata, subset=yourdata$VARIABLE=='LEVEL') 
yourdata$FACTOR <- as.factor(yourdata$NUMBER) 
 
SUMMARIES 
head(yourdata) 
str(yourdata) 
summary(yourdata) 
mean(yourdata$VARIABLE) 
sd(yourdata$VARIABLE) 
sd(yourdata$VARIABLE) / sqrt(length(yourdata$VARIABLE)) ) 
 
CORRELATION 
cor(yourdata$VARIABLE1, yourdata$VARIABLE2, method = "pearson") 
cor(yourdata$VARIABLE1, yourdata$VARIABLE2, method = "spearman") 
cor(yourdata$VARIABLE1, yourdata$VARIABLE2, method = "kendall") 
round(cor(yourdata[,2:4]),2) # correlation grid: columns 2-4, round to 2 dp 
 
COUNT DATA 
your.xtab<-xtabs(RESP~PRED1+PRED2,data=yourdata) 
 
fisher.test(your.xtab) 
 
chisq.test(your.xtab, correct=F) 
chisq.test(your.xtab, sim=T) 
chisq.test(your.xtab) 
 
chisq.test(your.xtab, correct=F)$res 
chisq.test(your.xtab)$res 
 
chisq.test(your.xtab, correct=F)$exp 
chisq.test(your.xtab)$exp 
 
ONE SAMPLE T-TEST 
t.test(yourdata$VARIABLE) 
 
TWO SAMPLE T-TEST 
t.test(RESP~PRED,data=yourdata, var.equal=T) 
t.test(RESP~PRED,data=yourdata) 
t.test(yourdata$GROUP1,yourdata$GROUP2,paired=T) 
 
GENERAL LINEAR MODELS 
model.lm <- lm(RESP~PRED1*PRED2, data = yourdata) 
model.lm <- lm(RESP~PRED1+PRED2, data = yourdata) 
summary(model.lm) 
anova(model.lm) 
model.aov <- aov(RESP~PRED1*PRED2, data = yourdata) 
model.aov <- aov(RESP~PRED1+PRED2, data = yourdata) 
summary(model.aov) 
TukeyHSD(model.aov, "FACTOR") 
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A note on 'rntransform' 
The rank normal transformation from library GenABLE is used quite a bit in this book, 
however, the library doesn't appear to be being maintained at the time of writing this. I 
have salvaged the code out of an older working version of GenABLE and included it as 
the very end of this PDF. 
 
If you want to create the rntransform function, just copy and paste the rntransform 
code included at the end of this file. You should find that 'rntransform' appears as a 
function in your working space. 
 

A note on citations 
This is not a peer-reviewed work. You should probably be hesitant about citing it in a 
peer reviewed journal. However, if you wish to, please use the following citation. This 
is updated each time a new version is released: 
 
Johnstone, Christopher P. (2019) Bio R: Statistical Stuff for the Biologically Minded (version 
2019.3). Self-Published.  
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Colour Coding 
R code in this PDF is colour coded throughout. Functions (commands) are coloured 
orange. Names of objects or options (i.e. things that you will need to change or rename) 
are coloured blue. Basic syntactical signs (parenthesis, commas, plus or multiplication 
signs) are colour black. Package names are coloured purple. Note, which follow a 
hashtag (#) are not read by R, and serve as a place where you can make notes about your 
tests, code, and figures. These are coloured green. 
 
In the following example, the orange words are functions that R will recognise as 
commands. Functions are typically placed to the immediate left of an opening 
parenthesis. The library 'car' is denoted in purple, and is bracketed by black quote marks 
and parentheses. The object swallows.lm is an object that the biologist as created and 
named themselves. 
 
install.pckages("car") # if not already installed 
library(car) 
crPlots(swallows.lm) 
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Significance Testing 
For most biologists statistics is a tool. It is a means to an ends. What we're really 
interested in is the plants, animals or microbes, not the stats. As such, we try to keep 
things simple, while maintaining some rigor throughout the process of analysis. 
 
What do we actually need to know? 

1. We need to be able to identify 'classes' of data 
2. We need to know how to pick an appropriate test 
3. We need to know & check the assumptions of tests 
4. We need to know how to run appropriate tests 
5. We need to know how to present the results 
6. We need to know how to interpret the results 

 
Working backwards through these points 
 
6. INTERPRETING RESULTS 
A P-value can be thought of as the probability that the result could have been obtained 
by chance given the noise in the data. 
 

- Is there a difference between A and B? P < 0.05 = Yes. P > 0.05 = No. 
- Are A and B showing a trend? P < 0.05 = Yes. P > 0.05 = No. 

 
5. PRESENTING RESULTS 
Usually what we present is: 

• Degrees of freedom (often n-1 but check your test results) 
• An n if no degrees of freedom is produced (some tests don't us df) 
• A test statistic 

o This is informative about the shape of the distribution. It is usually a ratio 
of the signal to noise in the data (higher = more signal, less noise) 

o F, z or t values are examples of test statistics 
o Usually reported to 2 dp (decimal places) 
o Test statistics are usually not interpreted in any way. They are presented 

in the results but not commented on in the Discussion.  
• A P-value 

o Informative about significance or non-significance 
o Usually reported to 3 dp. 
o If less than 0.001, write < 0.001. 
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Why don't we just use a test statistic? 
If the test statistic is a ratio of signal to noise, why use a P-value at all? The P-value 
depends on both the test statistic and the degrees of freedom. Using an made-up 
example where the F ratio is the test statistic… 
  
Table 1. Example of how changes in the test statistic (ratio of signal to noise) and degrees of freedom 
(information in the sample) can alter the P value (probability of having obtained a result if the null were 
actually true)  
 
 t value  df  P 
 2  5  0.501 
 4  5  0.005  Higher t but same df 
 2  10  0.037  Same t but higher df 
 
You can try these examples in R. Note how the P value changes as the degrees of freedom 
changes. The test statistic has been kept the same at 2.3. Note also that we need 1 minus 
the probability (pt) because R returns the beta rather than the alpha by default. 
 
# t-tests 
1-pt(2.3, 5) 
1-pt(2.3, 10) 
1-pt(2.3, 20) 
1-pt(2.3, 200) 
 
# t-tests 
1-pt(1.3, 6) 
1-pt(2.3, 6) 
1-pt(3.3, 6) 
1-pt(4.3, 6) 
 
Degrees of freedom, test statistics and P-values can also be presented as tables: 
 
Table 2. Example of how to present results in a table form. Instead of writing P < 0.05 in the table you 
could include a line here in the caption stating: alpha < 0.05 indicated by * 
 

Response Predictor df F P P < 0.05 
Mass (g) Fledging date 11 6.76 0.010 * 
 Habitat type 1 1.62 0.205  
Hct (%) Fledging date 11 15.31 < 0.001 * 
 Habitat type 1 2.10 0.150  
Hb (%) Fledging date 11 7.80 0.005 * 
  Habitat type 1 3.28 0.072   

 
Test statistics can be summarized as a group in the text, especially if they are non-
significant: 
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All tests of the effect of habitat on mass and blood variables for adult house 
swallows were non-significant (all df = 1, F < 3.28, P > 0.072). All tests of the 
effect of fledgling date on mass and blood variables for adult house swallows 
were significant (all df = 11, F > 6.76, P < 0.010). 
 
Note how the greater than and less than signs are arranged. If a set of tests are significant 
we are interested in the smallest F (test statistic) and largest P. If a set of tests are non-
significant we are interested in the largest F and smallest P. 
  
 How to write and talk about significance 

• There is no such thing as 'more' or 'less' significant. A P-value either meets a 
significance level (usually 0.05) or it doesn't. 

• If a test is not significant we say that it is 'non-significant' not 'insignificant'. 
• Being significant doesn't make something true. Significance only makes it more 

likely given the evidence. 
• Non-significant results can be informative too. 

 
 

4. RUNNING APPROPRIATE TESTS 
This will make up the bulk of the statistical sections of this pdf. 
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3. TESTING ASSUMPTIONS 
Each statistical test has a set of assumptions about the data that must be checked before 
running the test. Assumptions are not always the same among tests. For example, for a 
t-test the response data must be normally distributed, for an ANOVA the residuals of the 
model must be normally distributed, and for a chi-squared test there is no requirement 
for the data to be normal at all. 
  
Why test assumptions? 
Statistical tests make assumptions about the 'shape' of the data and/or the residuals of 
the model… for example, a t-test assumes that the data will consist of two 
(approximately) normally distributed sets for comparison: 

	
	

	
	

The example of the left would probably be acceptable for a t-test, but the example on 
the right would generate a P-value that would be meaningless nonsense. The key 
problem is that often a test will still be able to generate results when the data is 
unsuitable and if you don't stop to check the suitability of the data ahead of time your 
results may be extremely misleading. Remember also that assumptions are different for 
different tests. The assumptions for a t-test are not the same as a generalised linear 
model or a chi squared test. 
 
Do some tests have no assumptions? 
Some tests have very few (although independence of observations is always a given). A 
Kruskall-Wallis test for example has almost no assumptions about the underlying data, 
but still requires independence of observations. 
 
How do we test independence of observations? 
Although tests do exist to identify whether a set of values might have a correlation 
structure (perhaps spatial or temporal autocorrelation, for example), the key to avoiding 
the problem of pseudoreplication is good experimental design. Care needs to be taken 
to think through the nature of the design and in what ways samples might be interacting. 
 
2. PICKING AN APPROPRIATE TEST 
This will depend on whether your data meets the assumptions of a test. At its most 
fundamental, you need to first look at the response data and decide if it is continuous, 
binomial or count data. This will determine what sorts of tests you look at as potential 
first options. 
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1. IDENTIFY CLASSES OF DATA 
You have been provided with a handy flow chat to help you work out which test to use 
under different circumstances but the first step is identifying the class of data you have. 
These are the basic types of data you may be working with: 
 
Discrete data. This is an umbrella category that includes categorical, binomial, ordinal 
and also count data (although counts tend to be handled differently to the others). 
 
Categorical. Also called nominal data. R classifies categorical data as a factor. Categorical 
data consists of categories that have no relative positions to each other. Usually there are 
three or more categories. If there are two categories then the data becomes binomial. 
Categorical data will typically be a predictor (independent) in an analysis. An example of 
categorical data would be if you wanted to test bee pollination of three species of flowers. 
The flowers don't exist on a scale or spectrum, they are simple Species A, B and C forming 
three categories. In this example R would identify this as a factor (flower species) with three 
levels (species A, B and C). 
 
Binomial. Also called dichotomous data. Binomial data consists of two discrete categories. 
Yes and No responses, Male and Female or species site Presence and Absence data are all 
examples of binomial data. If you enter binomial data using words or letter R will identify it 
as a factor. If you enter Binomial data as 0 and 1 R will identify binomial data as an integer. 
 
Ordinal. Data that is ordered or ranked. Instead of measuring the length of fallen logs in a 
field site, you might decide to rank them from largest to smallest. Ordinal data can accept 
ties. If you decided two logs were so similar they were in effect the same size you could rank 
them 1, 2, 3, 3, 4, 5 and 6. R will identify ordinal data as an integer. 
 
Count. Count data is a sub-type of ordinal data where you have counted instances of 
something. R will identify count data as an integer.  
 
Continuous. Also called interval data. Continuous data is measured on a scale. It can be both 
positive and negative (e.g. temperature) or only positive (e.g. mass). If your data has (or could 
have) decimal places, R will identify it as a number. 
 
Percentages. Percentage data is a sub-type of continuous data. Percentages are often 
generated from observations of count data or continuous data. Percentages are bounded and 
non-normal, which breaks assumptions of a number of tests. They often need to be 
transformed. The standard transformation for a Percentage is an arcsine square root 
transformation. R will identify percentage data as a number. 
 
Ratios. Percentage data is a sub-type of continuous data. Ratios are often generated from 
observations of count data or continuous data, especially where one variable is measured 
against another variable. Ratios are bounded by zero and they are non-normal, which breaks 
assumptions of a number of tests. They often need to be transformed. The standard 
transformation for a Ratio is a square root transformation (if zeroes are present) or a log 
transformation (if no zeroes are present). R will identify Ratio data as a number.  
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Assumptions 
 
Most (nearly all) statistical analyses have assumptions. An assumption is a requirement 
that the data must satisfy for the test to be valid. Assumptions vary among tests but most 
frequently encountered assumptions are: 

• Independence: The samples must be independent of one another. This needs to be 
considered during the design phase. This is a consideration of almost all tests. Where it 
isn't a consideration, the test will probably be intended to examine the degree of 
departure from independence (i.e. spatial autocorrelation tests). 

• Normality: The data and variances of the data should be (reasonably) normally 
distributed. This can be tested in R. 

• Homogeneity and Homoscedasticity of variance: Are the variances of groups (reasonably) 
similar? In particular, there will be problems if the variance is larger in groups with larger 
means. This can be tested in R. 

• Linearity: In analyses of continuous data, such as in a regression analysis, linearity of the 
continuous data is important (i.e. the response data should not plot a curve against the 
explanatory data). This can be tested in R. 

• No correlation of predictors: Explanatory or predictor variables should not correlate. 
Multicolinearity occurs when predictors co-occur or co-correlate. For example, most 
smokers carry cigarettes and a lighter. Using both 'cigarette carrying' and 'lighter carrying' 
as predictors is invalid because they are correlating and 'explain' the same thing: the 
behaviour of smoking. Correlating predictors are sometimes referred to as confounding 
variables or nuisance variables. Sometimes the best option is to acknowledge in the 
methods that you collected data for A and B, but found that A and B were correlating 
(typically we worry if a correlation coefficient for two predictors is > 0.6), so the variable 
of least interest was dropped prior to analysis. 
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Expectations for data 
 

 
 

We expect continuous data to follow a normal distribution. 

	
 

But count data cannot be negative, so we can't expect counts to be normally distributed. Counts will run 
up against the zero line. 

	
 

And we wouldn't expect a binomial distribution of 0s and 1s to look anything like a bell shaped curve. 
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Frequency analyses 
Goodness of Fit :: Count Data 

	
Count data is produced when you have a response variable that is simple a count of items 
(trees in a plot, count of behaviours in a ten-minute period, insects in a trap). All of these 
variables could potentially be analysed with ANOVAs (mostly because ANOVAs are robust 
tests and can tolerate reasonably non-normal data), but usually if you did want to apply 
a linear model to count data, the count data will need to be scaled and/or centred in 
some way (either via percentages or applying transformations in R). 
 
Frequency analyses are a more appropriate choice. However, these require counts to be 
measured against a category, rather a continuous predictor. Typically this will be a count 
that is classified and then summed up, but depending on your level of independence you 
may need to average courts by category instead. A frequency analysis does accept 
fractions, so that an average of 5.3 counts for a category (for example) could be used 
without problems. 
 
To start us off, imagine you've done a field count of plants and have found 50 females 
and 40 males. We might want to ask whether this differs from the expected ratio of 1:1. 
To answer this we can calculate a chi-squared value and then derive a P value from it. 
 

Chi Squared = Sum (observed - expected) 2 / expected 
 

A chi-squared is an example of a test statistic. However, instead of being a ratio of signal 
to noise (like a t-value or an F-statistic) a chi-squared value is a ratio of the divergence 
of observed values from the expected values. This makes it something closer to being a 
ratio of signal to expectation, and it can be thought of as addressing the question: how 
much does this set of counts diverge from expected values? 
 
A straightforward chi-squared tested is sometimes called a goodness of fit test, but 
'goodness of fit' is a general term for any of a number of methods that test how well data 
fists a model. For example, an Akaike information criterion (AIC) is also a goodness of fit 
index, as is an R2 value, though these work quite differently to a chi-squared. For now, it 
is enough to know that a chi-squared is just one approach to questions about the 
goodness of fit of data to the expectations of an underlying model. 
 

ASSUMPTIONS OF CHI-SQUARED TEST 
(1) Categories are independently classified (collected randomly) 
(2) No more than 20% of expected values can be < 5 
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Using our example above, let's test whether 50 female plants and 40 male plants departs 
from the expected 1:1 ratio. 
 
Chi-squared goodness of fit tests against an expected ratio. A ratio of 1:1 is the default. 
 
chisq.test(c(40,50)) 
	

	
 
The percentage of males and females: 
 
40/90 
50/90 
	

	
 
What if we collected the same ratio, but from 900 bushes? 
 
chisq.test(c(400,500)) 
 

	
	

RESULT 
	
 Chi-squared test for given probabilities 
 
data:  c(40, 50) 
X-squared = 1.1111, df = 1, p-value = 0.2918 
	
	

RESULT 
	
> 40/90 
[1] 0.4444444 
> 50/90 
[1] 0.5555556 

RESULT 
 
> chisq.test(c(400,500)) 
 
 Chi-squared test for given probabilities 
 
data:  c(400, 500) 
X-squared = 11.111, df = 1, p-value = 0.0008581 
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But remember: never use percentages of the data or reduce the data down to a basic 
ratio, because this alters the results. You lose information about the weighting of the 
number of samples used to generate the data. 
 
chisq.test(c(44,56)) 
	

	
 
What if on the other hand we expected a 30:70 male to female difference? Maybe another 
researcher found a 30:70 male to female ratio in a closely related species and we want 
to check whether our species is different to this. Remember that order matters. Male 
observed = 40. Male expected = 30% (i.e. a proportion of 0.3). Female observed = 50. 
Female expected = 70% (i.e. a proportion of 0.7). 
 
chisq.test(c(40,50)	,p=c(0.3,0.7)) 
	

	
 
  

RESULT 
 
 Chi-squared test for given probabilities 
 
data:  c(44, 56) 
X-squared = 1.44, df = 1, p-value = 0.2301 

RESULT 
 
 Chi-squared test for given probabilities 
 
data:  c(40, 50) 
X-squared = 8.9418, df = 1, p-value = 0.002787 
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Chi-squared tests using a table of observations  
A chi-squared test can test divergence from expectation in two dimensional arrays of 
numbers too. Let's construct a simple 2x2 matrix. Let's say we have data that looks like 
this: 
 
Table	1.	Contingency	table	showing	counts	of	male	and	female	plants	of	the	same	species	with	pink	
and	white	flowers.	
	

  Male Female 
Pink 23 45 
White 34 67 

 
To run a chi-squared test we need to create a matrix. We will do this in R and call it 
'flowers'. 
flowers <- matrix(c(23,34,45,67), nrow=2) 
flowers 
 

 
	
Apply a chi-squared test 
chisq.test(flowers) 
	

	
	
This applies 'Yate's continuity correction' as a default, but this correction has fallen out 
of fashion among statisticians. We don't need to use it, so let's remove the correction.  

RESULT 
 
> flowers 
     [,1] [,2] 
[1,]   23   45 
[2,]   34   67 

RESULT 
 
 Pearson's Chi-squared test with Yates' continuity 
correction 
 
data:  flowers 
X-squared = 8.3917e-31, df = 1, p-value = 1 
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chisq.test(flowers, correct=F) 
 

 
 
Note that you could run the entire matrix inside the chi-squared test, but this approach 
can be confusing. It's best to take things a step at a time until you are used to how the 
code should look and where errors might happen. However, the whole code string as one 
line would look like this: 
 
chisq.test(matrix(c(23,34,45,67), nrow=2), correct=F) 
	

	
	
We can also use piping from the 'tidyverse' family of libraries. Some people find the 
piping method easier to use, and if you are used to piping, you can certainly make use of 
it here. Remember to load the packages using library("tidyverse") first. 
 
 matrix(c(23,34,45,67), nrow=2) %>% chisq.test(correct=F) 
	

	
	
	

RESULT 
 
 Pearson's Chi-squared test 
 
data:  flowers 
X-squared = 0.00046639, df = 1, p-value = 0.9828 

RESULT 
 
> chisq.test(matrix(c(23,34,45,67), nrow=2), correct=F) 
 
 Pearson's Chi-squared test 
 
data:  matrix(c(23, 34, 45, 67), nrow = 2) 
X-squared = 0.00046639, df = 1, p-value = 0.9828 

RESULT 
 
 
 Pearson's Chi-squared test 
 
data:  . 
X-squared = 0.00046639, df = 1, p-value = 0.9828 
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Bootstapping a Chi-squared Test 
If the assumption that no more than 20% of expected values less than 5 is not met, you 
will see an error stating that the P value may not be correct. For example, try this… 
 
flowers_2 <- matrix(c(5,7,45,2), nrow=2) 
flowers_2 
chisq.test(flowers_2, correct=F) 
 

 
 
Maybe we want to look at the expected values to check where the problem is. We can 
use the $ symbol to look inside a test, just like how you can use it to look inside a dataset. 
 
chisq.test(flowers_2, correct=F)$expected # $exp will also work 
 

 
 
One of the expected values is <5 (1.83). Because there are only four values, this means 
that 25% of the values are <5. The assumption that no more than 20% of expected values 
be 5 or less has not been met.  

RESULT 
 
> flowers_2 
     [,1] [,2] 
[1,]    5   45 
[2,]    7    2 
 
> chisq.test(flowers_2, correct=F) 
 
 Pearson's Chi-squared test 
 
data:  flowers_2 
X-squared = 21.625, df = 1, p-value = 3.315e-06 
 
Warning message: 
In chisq.test(flowers_2, correct = F) : 
  Chi-squared approximation may be incorrect 

RESULT 
 
          [,1]      [,2] 
[1,] 10.169492 39.830508 
[2,]  1.830508  7.169492 
 
Warning message: 
In chisq.test(flowers_2, correct = F) : 
  Chi-squared approximation may be incorrect 
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You can use the $ to look at other variables in the test as well. To find out what you can 
view, use the structure command (str) on the test. 
 
str(chisq.test(flowers_2, correct=F)) 
 
Or you could turn the test into an object and look at the structure this way… 
 
flowers_2_test <- chisq.test(flowers_2, correct=F) 
str(flowers_2_test) 
 
Or you could use tidyverse piping, like this… 
 
flowers_2 %>% chisq.test(correct=F) %>% str() 
 
These should all give the same result (note that the warning will keep repeating because 
the people who have programmed R are rather thorough, and they don't want you to 
miss the warning by accident): 
 

 
 
Try looking at the residuals. The approach is the same as for expected values. 
 
chisq.test(flowers_2, correct=F)$residuals # $res will also work 
 
 
  

RESULT 
 
> str(chisq.test(flowers_2, correct=F)) 
List of 9 
 $ statistic: Named num 21.6 
  ..- attr(*, "names")= chr "X-squared" 
 $ parameter: Named int 1 
  ..- attr(*, "names")= chr "df" 
 $ p.value  : num 3.31e-06 
 $ method   : chr "Pearson's Chi-squared test" 
 $ data.name: chr "flowers_2" 
 $ observed : num [1:2, 1:2] 5 7 45 2 
 $ expected : num [1:2, 1:2] 10.17 1.83 39.83 7.17 
 $ residuals: num [1:2, 1:2] -1.621 3.821 0.819 -1.931 
 $ stdres   : num [1:2, 1:2] -4.65 4.65 4.65 -4.65 
 - attr(*, "class")= chr "htest" 
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So, what do you do if the assumption that no more than 20% of the values should be 5 
or less? One potential workaround is to compute a p-value by Monte Carlo simulation 
and use this for the chi-squared test. R has a built-in function that allows you to do this: 
 
To use a Monte Carlo simulation, try this: 
 
chisq.test(flowers_2, correct=F, simulate.p.value=T) 
# note that sim=T will also work 
	

	
 
The above test result was generated from 2000 simulations of the data using Monte 
Carlo picking. We might want to increase this value. Let's try 10,000 simulations. The 
test uses B to indicate number of simulations for the Monte Carlo test. Usually 10,000 
is considered a suitable number for any kind of bootstrapping or simulation. If you don't 
see a significant result at 10,000 simulations, it probably isn't there to see. 
 
chisq.test(flowers_2, correct=F, simulate.p.value=T, B=10000) 
	

	
	
A Fisher Exact Test will also allow you to get around problems of not meeting the 
assumption that no more than 20% of expected values be 5 or less, but this test doesn't 
work with all configurations of data. The Monte Carlo simulation (above) is more 
flexible. 
 
fisher.test(flowers_2)	
	  

RESULT 
 
 
 Pearson's Chi-squared test with simulated p-value 
(based on 2000 replicates) 
 
data:  flowers_2 
X-squared = 21.625, df = NA, p-value = 0.0004998 

RESULT 
 
 Pearson's Chi-squared test with simulated p-value 
(based on 10000 replicates) 
 
data:  flowers_2 
X-squared = 21.625, df = NA, p-value = 9.999e-05 
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But how do we interpret this? 
The P value for the Chi Squared test is telling us whether there is any significant 
departure at all of observed from expected values. But what if we want to understand 
which categories are driving a significant result. We can do this visually using mosaic 
plots, but a mosaic plot is simply a visual representation of residuals. What are the 
residuals and how do we interpret them? 
 
You can check residuals in the same way that you checked expected values… let's start 
by going back to our original flowers matrix. 
 
flowers <- matrix(c(23,34,45,67), nrow=2) 
flowers 
 
chisq.test(flowers, correct=F)$residuals 
 

 
 
Any residual that is between -2 and -4 or between +2 and +4 is significant at the 0.05 
level. Any residual that is less than -4 or above +4 is significant at the 0.01 level. If you 
remember, our first flowers dataset did not significantly depart from expected values (P 
= 0.983), so it is no surprise to discover that there are no significant differences in the 
residuals. 
 
Let's try a different dataset, one with more rows and columns and more extreme 
differences in values. 
 
Table	2.	Contingency	table	showing	counts	of	male	and	female	plants	of	the	same	species	with	pink	
and	white	flowers.	
 

  Male Female 
Red 2 10 
Pink 15 45 
White 38 7 

 
  

RESULT 
 
 
 > chisq.test(flowers, correct=F)$residuals 
 
            [,1]         [,2] 
[1,]  0.01359119 -0.009695849 
[2,] -0.01115196  0.007955723 
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flowers_3 <- matrix(c(2,15,38,10,45,7), nrow=3) 
flowers_3 
 

 
 

Chi Squared Steps 
1) Check the assumptions (i.e. look at the expected values) 
2) Decide, can you use a standard Chi Squared test or Monte Carlo simulations? 
3) Run the appropriate test 
4) Check the residuals 
5) Produce a mosaic plot 
	
# 1) are 20% of values < 5? 
chisq.test(flowers_3, correct=F)$expected 
 
# 2) No expected values are 5 or less. Assumptions are met. 
 
# 3) Run the test. There is a significant result. 
chisq.test(flowers_3, correct=F) 
 
# 4) Check the residuals. 
chisq.test(flowers_3, correct=F)$residuals 
 
# 5) Produce a mosaic plot. 
mosaicplot(flowers_3, shade=TRUE) 
 
  

RESULT 
 
> flowers_3 <- matrix(c(2,15,38,10,45,7), nrow=3) 
> flowers_3 
 
     [,1] [,2] 
[1,]    2   10 
[2,]   15   45 
[3,]   38    7 
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fig.	1.	A	mosaic	plot	showing	values	above	and	below	expected	for	distributions	of	flower	colours	in	
a	species	of	dioecious	angiosperm	(χ2	=	41.4,	df	=	2,	P	<	0.001).	
 
Note that the chi letter (χ) is used to denote the chi squared test statistic. Now, one 
obvious problem with this plot is that R has no idea what the rows and columns should 
be called. This makes it hard for us too. But we can rename the row and column names 
in R. Try this… 
 
rownames(flowers_3) <- c("Red", "Pink", "White") 
colnames(flowers_3) <- c("Male", "Female") 
flowers_3 
 

 
  

RESULT 
 
      Male Female 
Red      2     10 
Pink    15     45 
White   38      7 
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mosaicplot(flowers_3, shade=TRUE) 
 

	
fig.	2.	A	mosaic	plot	showing	values	above	and	below	expected	for	distributions	of	flower	colours	in	
a	species	of	dioecious	angiosperm	(χ2	=	41.4,	df	=	2,	P	<	0.001).	Red	flowers	in	males	(res	=	-1.5)	and	
females	(res	=	1.4)	did	not	differ	from	expected.	Pink	flowers	occurred	at	numbers	significantly	
below	expected	in	males	(res	=	-2.5	and	above	expected	in	females	(res	=	+2.4).	Contrastingly,	white	
flowers	were	at	numbers	significantly	above	expected	in	males	(	res	=	+3.7)	and	below	expected	in	
females	(res	=	-3.4)	
 
The shade=TRUE component of the code is telling R that you want it to produce 
boxes that show blue for significantly above expected and red for values significantly 
below expected. If we compare the box colours to the residuals, we will see that the 
colours will match. Note that col=TRUE simply paints half the boxes dark or light 
grey, and isn't meaningful in terms of interpretation. 
 
It's also worth being aware that the residuals are in the unit of the original count too. 
So, that there were 3.4 fewer white flowers than expected in the dataset, given the 
distribution of all other flower colours by plant sex. 
 
 
  



	
	

33	

	
	

Using data from a comma delineated (csv) file 
Let's look at an example using real data. Import the myna pecking data set 
(myna_peck.csv). This dataset contains a count of the number of times common mynas 
were pecking in a 10 second observation period. There is a set of explanatory variables 
included as well, but the primary variable of interest is whether the common mynas were 
observed in urban, suburban, periurban or rural landscapes. 
	
myna <- read.table('mynas_peck.csv',header=T,sep=',') 
str(myna) 
 
Because this is a balanced design (there are 40 observations per landscape category) we 
can (arguably, see below) sum the values together to generate a contingency table. 
 
myna.xtab <- xtabs(PECK.rate~REGION,data=myna) 
myna.xtab 
	
Check expected values. 
chisq.test(myna.xtab, correct=F)$exp 
	
Run a chi squared test. 
chisq.test(myna.xtab, correct=F) 
	
We can look at the residuals. 
chisq.test(myna.xtab, correct=F)$res 
	
REGION 
 Peri-urban       Rural    Suburban       Urban  
-0.50529115  0.08421519  0.50529115 -0.08421519 
 
The residuals indicate that pecking was slightly below expected in peri-urban and urban 
environments and slightly above expected in rural and suburban environments, but the 
difference isn't significant. Library vcd has a nice looking mosaic plot option: 
library(vcd) 
strucplot(myna.xtab,shade=T) 
 
You will have received an error message after running the structure plot. This hasn't 
worked because there is only one predictor. You need to take the residuals from the chi-
squared test and use them in the structure plot. This code takes the residuals and drops 
them into a new object we've created and called RES. 
RES <- chisq.test(myna.xtab, correct = F)$res 
strucplot(myna.xtab, shade = T, residuals = RES)
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fig.	3.	A	mosaic	plot	showing	values	above	and	below	expected	for	rates	of	mynas	pecking	
per	10	seconds	(a	measure	of	foraging	activity)	(χ2	=	0.53,	df	=	3,	P	=	0.913).	The	foraging	
activity	has	been	summed	across	four	regions:	urban,	suburban,	rural	and	peri-urban.	No	
values	were	found	to	be	significantly	above	or	below	expected.	All	residuals	were	between	-
0.51	and	+0.51.	
 
One confusing element of this graph is that there is a p-value = < 2.22e-16 down at the 
bottom of the residuals bar. This is false and has been generated because we forced the 
mosaic plot to accept residuals to get around the error message above. Because nothing 
is significant, it may be preferable to just present the plot without a residual bar (i.e. 
remove shade = T). If you were determined to use this plot, you'd need to either include 
a note in the caption that the P value shown is the maximum possible significance value 
in R and in this instance it is not indicating significance here, or, simply remove it in an 
image manipulation program.  
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Summing or averaging? 
Arguably, we may have broken the assumption of independence by summing the peck 
counts just now. The pecks are counts per bird per hour. As a bird is likely to be pecking 
at a given rate because it is feeling more or less safe in the environment (i.e. a bird that 
isn't worried about predation is more likely to spend time feeding), then the peck counts 
are probably not strictly independent. How might we solve this? One obvious (and 
perhaps the most straightforward) approach is to create a new csv file, average out all 
the pecks by geographic area, and use that. However, we can do something similar in R, 
although it takes a bit of code. Have a go at this… 
 
# library plyr is part of the tidyverse, so if you already have 
tidyverse loaded, plyr should already be running. If not, load it: 
 
library(plyr) 
 
attach(myna) 
myna.average <- ddply(myna, .(REGION), summarise,  
  PECK.MEANS = mean(PECK.rate)) 
	
# Check that this worked	
myna.average 
 

	
	
	
# Turn into a dataframe	
myna.average <- as.data.frame(myna.average) 
	
myna.xtab <- xtabs(PECK.MEANS~REGION,data=myna.average) 
myna.xtab 
	
Check expected values (note that R recognised 'exp' as an abbreviation of 'expected'). 
chisq.test(myna.xtab, correct=F)$exp 
	
  

RESULT 
 
> myna.average 
      REGION PECK.MEANS 
1 Peri-urban      3.375 
2      Rural      3.550 
3   Suburban      3.675 
4      Urban      3.500 
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Run a chi squared test. 
chisq.test(myna.xtab, sim=T, B=10000) 
	
We're getting an error message. What does this mean? 
 

 
 
This warning simply means that there are a small number of 'recycled' values in the 
matrix of 10,000 simulations that is generated. This is because the total length of the 
data is not an even multiple of the number of rows. To all intents and purposes, you can 
ignore this message, especially where the result is highly non-significant (as here) or you 
have a P <0.01. If you do get a marginal significance (i.e. around P = 0.04 to 0.05), then 
you might want to worry about resolving this mathematically, but in that case you may 
need to talk to a mathematician. 
 
Note that you could do the same manually with the averages, generating a matrix: 
 
myna_average_pecks <- matrix(c(3.375,	3.550,	3.675,	3.500)) 
 
rownames(myna_average_pecks) <- c("Peri-urban", "Rural", 
"Suburban","Urban") 
 
colnames(myna_average_pecks) <- c("Average_Pecks") 
 
myna_average_pecks 
 
Check expected values. 
chisq.test(myna_average_pecks, correct=T)$exp 
	
Run a chi squared test. 
chisq.test(myna_average_pecks, sim=T, B=10000)  

RESULT 
 
chisq.test(myna_average_pecks, sim=T, B=10000) 
 
 Chi-squared test for given probabilities with simulated 
p-value (based on 10000 replicates) 
 
data:  myna_average_pecks 
X-squared = 0.013121, df = NA, p-value = 1.007 
 
Warning message: 
In matrix(sample.int(nx, B * n, TRUE, prob = p), nrow = n) : 
  data length [141000] is not a sub-multiple or multiple of 
the number of rows [14] 
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Further Example: Another Flowers Matrix 
Have a go at these examples if you want some practise. 
 
Let's create the following matrix. 
	

  Male Female 
Red 2 4 
Pink 5 16 
White 18 1 

	
	
flowers <- matrix(c(2,5,18,4,16,1), nrow=3) 
flowers 
 

Chi squared steps 
1) Check the assumptions (i.e. look at the expected values) 
2) Decide, can you use a standard Chi Squared test or Monte Carlo simulations? 
3) Run the appropriate test 
4) Check the residuals 
5) Produce a mosaic plot	
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Further Example: Wildebeest Dataset 

Import the wildebeest.csv dataset. Some researchers looked at whether there was a sex 
difference in the number of wildebeest calves that died from predation versus other 
causes. Let's see if we can identify any significant departures of observed from expected 
values. 
	
wildebeest <- read.table(wildebeest.csv',header=T,sep=',') 
str(wildebeest) 
 

Chi squared steps 
1) Create a contingency table (use the xtab function). You need to use a + because we 
want to divide the predictor variables along two categories: 
 
wildebeest.xtab <- xtabs(COUNT~SEX+DEATH,data=wildebeest)	
 
2) Check the assumptions (i.e. look at the expected values) 
3) Decide, can you use a standard Chi Squared test or Monte Carlo simulations? 
4) Run the appropriate test 
5) Check the residuals 
6) Produce a mosaic plot 
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Library vcd 
Library vcd has a couple of nice visual options for presenting contingency tables. You 
can generate a mosaic plot using the strucplot command, and another option, assoc 
will split up a mosaic plot and lay it out so that it is easier to read.	
	
wildebeest.xtab <- xtabs(COUNT~SEX+DEATH,data=wildebeest) 
 
library(vcd) 
	
strucplot(wildebeest.xtab, shade=T) 
 

	
If you reorder the predictors in the contingency table, the axes will flip: 
	
wildebeest.xtab <- xtabs(COUNT~DEATH+SEX,data=wildebeest) 
 
strucplot(wildebeest.xtab, shade=T) 
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wildebeest.xtab <- xtabs(COUNT~SEX+DEATH,data=wildebeest) 
 
assoc(wildebeest.xtab, shade=T) 
 

	
	
When you are only dealing with a couple categories, splitting up a mosaic plot into an 
association plot probably isn't necessary, but if you have an array of three or more rows 
by three or more columns, it can be helpful. 
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Correlation 
Goodness of Fit :: Continuous Data 

 
Correlation coefficients and tests of correlation are used to assess the degree of 
association between two sets of paired data. In essence, if have a set of X (predictor) and 
paired Y (response) data, we can then use correlation to examine the degree to which X 
predicts Y. 
 

Correlation Coefficients 
A correlation coefficient is a type of effect size. It is presented as a number (from -1 to 
+1) that measures the degree of association between two sets of numbers. A value of -1 
indicates a perfect negative relationship where all variation in Y is explained by X. A 
value of +1 indicates a perfect positive relationship where all variation in Y is explained 
by X. The most common correlation coefficient is Pearson's r. Pearson's r assumes X and 
Y to have a linear relationship. The other two types of correlation coefficient we will look 
at are non-linear. These are spearman's rho (ρ) and Kendall's tau (τ). 
 

Linear Correlation: Pearson's r 
Pearson's correlation is defined as the ratio of the covariance of X and Y to the geometric 
mean of the variances of X and Y. Correlations can range from -1 to 1. The closer the 
number is to -1 or 1, the stronger the correlation is. The closer the number is to 0, the 
weaker the correlation is. Parametric correlation assumes that both X and Y are normally 
distributed. Non-parametric (non-linear) correlation does not make this assumption. 
Pearson's correlation coefficient (r) is the most commonly used correlation coefficient. It 
assumes linearity of association and is defined as: 
 

r	=	covariance	of	x	and	y	/	square	root	of	the	variances	of	x	and	y	
	

ASSUMPTIONS OF CORRELATION (Pearson) 
(1) Both variables are continuous  
(2) Both variables are approximately normally distributed 
(3) There is a linear relationship between the variables 
(4) There is homoscedasticity of the data (equal variance) 
(5) Observations must be independent (collected randomly) 

 
Note that the total percentage of variance explained (R2), is literally just Pearson's r 
squared. This is important because the correlation coefficient itself does not represent 
the percentage of variation explained. If you have r = 0.45 then the percentage of 
variation explained is 0.452, which is an R2 of 0.2025, or 20.25%.  
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(1) Are the variables continuous? (or at least numeric) 
Import the dataset swallow-nestlings-blood.csv (remembering to change your working 
directory if needed). This is an actual dataset from an honours project. 
 
nestlings <- read.table('swallows-nestlings-blood.csv', 
header=T,sep=',') 
 
Check the data: 
head(nestlings) 
str(nestlings) 
 
We are going to work with Haematocrit (Hct) and Haemoglobin in grams per decilitre 
(Hb.g.dL). Both are numeric and continuous. There may be missing data because this is a 
real dataset and sometimes birds escape before they are fully measured. A quick but 
drastic way to remove all lines that have missing data uses this code: 
 
nestlings<-na.omit(nestlings) 
 
Note that applying an na.omit to a dataset without checking what it did to the dataset is 
dangerous. Have a look at the dataset and compare. Did it remove any observations? 
 
head(nestlings) 
str(nestlings) 
 
We're now going to use this dataset to check whether haemoglobin (the oxygen carrying 
pigment in red blood cells) correlates with haematocrit (packed red blood cell volume as 
a percentage of total blood volume). It would be astoundingly strange if these two 
variables didn't correlate to some degree, but let's check how strong the correlation 
might be. 
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(2) Testing for violations of normality of the underlying data 
Are both variables approximately normally distributed? A Shapiro-Wilks test is a test of 
normality where the null is that the data follows a normal distribution. If P < 0.05 then 
the data is not normally distributed. 
 
shapiro.test(nestlings$Hct) 
shapiro.test(nestlings$Hb.g.dL) 
	
	

	
	
 
This implies that neither of the two datasets are normally distributed (both P < 0.05). 
We'd like to compare the results for a Pearson's r (which expects normality and linearity) 
to the non-parametric Spearman and Kendall correlation values for this dataset, so we 
will simply proceed. However, if we were planning to publish these results we wouldn't 
use the Pearson's r. It isn't appropriate because the assumption that the datasets are (at 
least roughly) normally distributed has not been met. 
 	

RESULT 
 
 Shapiro-Wilk normality test 
 
data:  nestlings$Hct 
W = 0.94934, p-value = 1.895e-14 
 
 
 Shapiro-Wilk normality test 
 
data:  nestlings$Hb.g.dL 
W = 0.92072, p-value < 2.2e-16 
	



	
	

44	

Let's also look at histograms of the data: 
 
hist(nestlings$Hct) 
hist(nestlings$Hb.g.dL) 
 
	

	
	
 
We can adjust the min, max and break values like so: 
 
# plot range from 0.0 to 0.9, at 0.01 increments 
hist(nestlings$Hct, breaks=seq(0.0,0.9,0.01), col="grey") 
 
# plot range from 0 to 20, at 0.25 increments 
hist(nestlings$Hb.g.dL, breaks=seq(0,20,0.25), col="grey") 
	
	

	
	
The plot of haemoglobin (Hb.g.dL) looks especially skewed. The plot of haematocrit is 
not as skewed, but is much too condensed around the mean to be strictly normal.  
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(3) Testing for violations of linearity 
We need to construct a linear model to test assumptions of linearity. We use the lm 
function to construct a linear model. You can read the tilde (small squiggly line) to mean 
'as a function of'. So, this code asks for a linear model (lm) of haemoglobin (Hb.g.dL) 
as a function of (~) haematocrit (Hct), using the nestlings dataset (data=nestlings). 
 
swallows.lm <- lm(Hb.g.dL ~ Hct, data=nestlings) 
 
Now, load package	car.	
	
install.pckages("car") # if not already installed 
library(car) 
 
Produce a component residual plot to check linearity of the relationship: 
 
crPlots(swallows.lm) 

	
 
If the green line (representing the best non-linear curve of fit) departs from the red line 
(a straight line of best fit), then the assumption of linearity has probably not been met. 
We already know that the underlying data is not normal, so it is no surprise to discover 
that the component residual plot is indicating a violation of linearity. 
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(4) Testing for violations of homoscedasticity (equal variance) 
We can also use our linear model to check whether the variances of the residuals are 
larger at one end of the range of values than the other. We already created a linear model 
to check for linearity (above), and we can use the same model here. 
 
Set the plotting window to a 2x2 array (i.e. four plots arranged in a square). 
par(mfrow=c(2,2)) 
 
Plot four diagnostic plots. 
plot(swallows.lm) 
 

	
 
Return the plotting window to default settings. 
dev.off() # this will also clear your plots! 
 
The diagnostic plots check for linearity and equal variance of residuals (Residuals vs 
fitted), normal distribution of residuals (Normal Q-Q), linearity and equal variance of 
residuals (again) (Scale-Location), and whether there are any outliers in the residuals 
(Residuals vs Leverage).  For now, let's just focus on the left two graphs, Residuals vs 
Fitted and Scale-Location. Both of these graphs should ideally show a (relatively) 
straight, horizontal red line (indicating linearity) and no 'wedge' shape in the data 
(indicating equal variance). In our case, the relationship is clearly not linear (both red 
lines are highly u-shaped), but there is no 'triangle', 'arrowhead' or 'wedge' shape to the 
data (it's just an amorphous cloud, which is what we want). So, at least the assumption 
of equal variances has probably been met.  
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(5) Testing for violations of independence 
Although there are some statistical approaches to testing independence of observations, 
the most effective way to avoid problems of independence is good experimental design 
and clear thinking. Observations are independent if the value of one observation would 
not (partially or wholly) predict the value of another observation. In our dataset, we might 
actually have a problem with independence. There are haemoglobin and haematocrit 
values for multiple nestlings per nest in the study area. Because two or more nestlings 
would be under the same conditions (i.e. same parents, same food resources in the 
environment), these values probably do represent pseudo-replication of the results. That 
is, if we know the Hct of a nestling, then we probably could make a guess as to the likely 
range for its siblings in the same nest. If we were planning to publish this data we would 
have to either average values to the nest, or use a linear mixed effects model with 
NEST.ID as a random effect. 
 
For our purposes, we will simply proceed, but keep in mind that we really are simply 
examining the dataset for teaching purposes now. It has violated almost all of our 
assumptions, and the results of a Pearson's r linear correlation applied to it will not be 
reliable, and probably not even meaningful.	
 
Plot the data for haematocrit and haemoglobin: 
plot(nestlings$Hct, nestlings$Hb.g.dL) 
 

 
fig	 1.	 Haematocrit	 (Hct)	 and	 haemoglobin	 (Hb)	 (g/dL)	 in	 12	 day	 old	
nestling	welcome	swallows. 
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The default R plot isn't very attractive. We can adjust colours and point characters 
(pch), as well as add a line of best fit using the linear model we created earlier. The 
scatterplot will appear first, and then the line of best fit will be added over the top 
using the abline function. 
 
plot(nestlings$Hct, nestlings$Hb.g.dL, pch = 20, col = 
"grey50", xlab="Haematocrit (%)", ylab="Haemoglobin (g/dL)") 
	
abline(swallows.lm, col = "red", lwd=2)	
	

	
fig	1.	Haematocrit	(Hct)	and	haemoglobin	(Hb)	(g/dL)	in	12	day	old	
nestling	welcome	swallows.	Line	in	red	is	a	line	of	best	fit	assuming	
linearity	of	the	relationship. 

	
	
pch = 20 # point shape… try other numbers	
col = "grey50" # Colour… try other colours 
xlab = "Haematocrit (%)" # Label for the x-axis 
ylab = "Haemoglobin (g/dL)"  # Label for the y-axis 
lwd = 2 # Line width… try other numbers 
	
For example: 
plot(nestlings$Hct, nestlings$Hb.g.dL, pch = 17, col = 
"hotpink2", xlab="Haematocrit (%)", ylab="Haemoglobin (g/dL)") 
	
abline(swallows.lm, col = "seagreen4", lwd=5)	

  



	
	

49	

Calculating a Pearson's r 
Pearson's correlation coefficient (r) is the most commonly used correlation coefficient. It 
assumes linearity of association and is defined as: 
 

r	=	covariance	of	x	and	y	/	square	root	of	the	variances	of	x	and	y	
 
We will attach the dataset to make life easier. Attaching a dataset means that R will 
always be looking at the dataset and you don't need to keep stating that we are 
working with the nestlings dataset. 
 
attach(nestlings) 
 
Calculate variances and covariance: 
 
var(Hct) 
var(Hb.g.dL) 
var(Hct,Hb.g.dL) 
 
Now we will calculate a Pearson's r correlation coefficient: 
 
var(Hct,Hb.g.dL)/sqrt(var(Hct)*var(Hb.g.dL)) 
 
Now we can calculate the Pearson's correlation coefficient using R. 
 
cor(Hct, Hb.g.dL, method = "pearson") 
 
 

 
 

  

RESULT 
 
> var(Hct,Hb.g.dL)/sqrt(var(Hct)*var(Hb.g.dL)) 
[1] 0.6571337 
 
> cor(Hct, Hb.g.dL, method = "pearson") 
[1] 0.6571337	
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A correlation test using Pearson's r 
Correlation tests are not used very often in biological sciences, although especially for 
non-linear associations (Spearman and Kendall's), these tests should perhaps be used 
more often. Correlation tests are so infrequently used in biology that if you do use a 
correlation test, you may have to reference it. Otherwise a reviewer may not even know 
what it is. 
 
attach(nestlings) 
cor.test(Hct, Hb.g.dL, method = "pearson") 
 

 
 
The P value for a Pearson's correlation test should be exactly the same as for a simple 
regression analysis with one predictor and one response (which are more frequently used 
in biology). The test above gives a test statistic (t), degrees of freedom (df) and P value 
(p-value). There is also a 95% confidence interval for the range of the Pearson's r value 
(in this case we have 95% confidence that it is between 0.610 to 0.700). The estimated 
Pearson's r is also provided. If you reported this in a results paragraph it might read like 
this: 
 
There	was	a	significant	positive	relationship	(r	=	0.657)	between	haemotocrit	(%)	
and	haemoglobin	(g/dL)	in	12	day	old	house	swallows	(correlation	test:	t	=	22.6,	
df	=	673,	P	<	0.001).	
 
Remember that a P value of 2.2e-16 is actually 0.00000000000000022. There is no point 
in reporting P values below 0.001, so we just state this was significant at < 0.001. 
 
Referencing the test? How do we find the appropriate reference? Luckily for us, the help 
function in R will usually have academic references listed. Use this command: 
?cor.test   

RESULT 
 
> cor.test(Hct, Hb.g.dL, method = "pearson") 
 
 Pearson's product-moment correlation 
 
data:  Hct and Hb.g.dL 
t = 22.616, df = 673, p-value < 2.2e-16 
alternative hypothesis: true correlation is not equal to 0 
95 percent confidence interval: 
 0.6120200 0.6979844 
sample estimates: 
      cor  
0.6571337	
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Non-linear correlation coefficients 
Spearman and Kendall correlation coefficients are both forms of ranking coefficients 
that allow us to obtain correlation coefficients for non-linear and non-normally 
distributed relationships. 
 

ASSUMPTIONS OF CORRELATION (Spearman & Kendall) 
(1) Both variables are at least ordinal (counts & continuous are ok) 
(2) Scores of variable X must be montonically related to variable Y 
(3) Kendall is preferred to Spearman (better statistical properties) 
(4) Observations must be independent (collected randomly) 

 
 

(1) Testing for violations of ordinal numbers 
What does 'at least ordinal' mean? Many non-parametric tests (that is tests that make no 
assumptions about distributions of data), do require data to be 'at least ordinal'. In an 
ordinal series of data numbers don't necessarily need to be on the same scale but a 
higher number does need to represent a higher value. So, for example, if we have five 
forest fragment of a = 5 ha, b = 6.1 ha, c = 10 ha, d = 12.2 ha and e = 300 ha we could 
convert this to an ordinal series of a = 1, b = 2, c = 3, d = 4 and e = 5. Obviously the 
information in the original measurement has been lost, but non-parametric tests often 
don't care about relative differences anyway. They usually are only interested in which 
of two values is higher. Before conversion to a scale, the difference between fragments 
e and d was a 25x difference, and the difference between c and d was a 1.2x difference. 
Reframing these values as an ordinal scale removes the scale differences between 
variables but retains their ordinal positions. That is, d is still smaller than e but larger 
than a, b and c. 
 
Anyway, for your purposes, you are extremely unlikely to ever have datasets that are not 
ordinal. You would need to have a quite strange set of data where 8 might be higher than 
5 in one instance but lower than 5 in another instance. 
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(2) Testing for violations of a monotonic relationship 
What does monotonic mean? A monotonic relationship does not need to be linear but it 
does need to be the case that as variableX increases, variable Y also increases or 
decreases in a consistent way. Distributions that are u, or n shaped are not monotonic. 
 

 
 

(3) Kendall is preferred to Spearman 
Really? Why are we bothering looking at Spearman then? Although arguably Kendall's 
tau is simply mathematically preferable to Spearman's rho, some statisticians will advise 
that for small datasets (<50) it is better to use Spearman's, whereas if a dataset is 50 or 
larger, we would use Kendall's. This may be a matter that your supervisor (or an editor 
or reviewer) may have an opinion on, so both methods are presented. Realistically, 
however, differences between Spearman and Kendall correlation coefficients tend to be 
reasonably small. If you do find that the difference between the coefficients is large 
(more than about 0.1), then look at the size of the dataset, and opt for Spearman for 
smaller (n < 50), and Kendall for larger (n > 50) datasets. 
 

(4) Violations of independence 
This again? Yes. Independence of observations is an assumption of all statistical tests. It 
is best to be sure your experimental designs are well thought out.	
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Pearson's, Spearman's and Kendall's correlations 
Let's obtain all three correlation coefficients and compare them.	
	
attach(nestlings) 
	
When you attach data for the second (third, fourth etc) time, R will save a bit of memory 
space by 'masking' columns from previous attaches. The long screed of red 'error' 
message isn't an error at all. It's just telling you that some columns are being masked 
from an earlier attach.	
	
cor(Hct, Hb.g.dL, method = "pearson") # parametric 
cor(Hct, Hb.g.dL, method = "spearman") # non-parametric	
cor(Hct, Hb.g.dL, method = "kendall") # non-parametric	
	
detach(nestlings) # to keep our working space clean 
	
	

	
 
We already know that this dataset isn't highly suitable for the linear (Pearson) correlation 
coefficient. But the coefficient for Spearman and Kendall are quite different (over 0.1 
apart). Which should we choose? As this is a large set of observations (>50), the Kendall 
is preferable. This leaves us with the Kendall's tau of 0.554. 
 
  

RESULT 
 
> cor(Hct, Hb.g.dL, method = "pearson") # parametric 
[1] 0.6571337 
 
> cor(Hct, Hb.g.dL, method = "spearman") # non-parametric 
[1] 0.7048725 
 
> cor(Hct, Hb.g.dL, method = "kendall") # non-parametric 
[1] 0.5542297	
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Spearman's and Kendall's correlation tests 
This is similar to the code we used for the Pearson's correlation test, but with the method 
replaced with "spearman" or "kendall".	
 
attach(nestlings) 
 
cor.test(Hct, Hb.g.dL, method = "spearman")	
cor.test(Hct, Hb.g.dL, method = "kendall")	
 

 
 
The way Spearman's rho works is by ranking the observations and looking for a trend in 
the ranks. This means that this coefficient will encounter (slight) problems if there are 
ties in the ranks. However, unless your P value is close to the marginal 0.04-0.05 range 
you probably don't need to worry too much about this error message. 
 
In this instance, though, we've already established that we prefer the Kendall test 
anyway, so the ties are fine (although, be warned that Kendall's tau will also produce 
errors for ties when n < 50).   

RESULT 
 
> cor.test(Hct, Hb.g.dL, method = "spearman") 
 
 Spearman's rank correlation rho 
 
data:  Hct and Hb.g.dL 
S = 15128000, p-value < 2.2e-16 
alternative hypothesis: true rho is not equal to 0 
sample estimates: 
      rho  
0.7048725  
 
Warning message: 
In cor.test.default(Hct, Hb.g.dL, method = "spearman") : 
  Cannot compute exact p-value with ties 
 
> cor.test(Hct, Hb.g.dL, method = "kendall") 
 
 Kendall's rank correlation tau 
 
data:  Hct and Hb.g.dL 
z = 20.712, p-value < 2.2e-16 
alternative hypothesis: true tau is not equal to 0 
sample estimates: 
      tau  
0.5542297	
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How would you present this in a results section? It's preferable to use the tau (τ) or rho 
(ρ) symbols rather than the words spelled out, but otherwise, it is similar to how we 
presented the Pearson results above. In this case: 
 
There	was	a	significant	positive	relationship	 (τ	=	0.554)	between	haemotocrit	
(%)	and	haemoglobin	(g/dL)	in	12	day	old	house	swallows	(Kendall's	correlation	
test:	z	=	20.7,	n	=	675,	P	<	0.001).	
 
We included an n because Kendall's correlation test doesn't use degrees of freedom. We 
can obtain this by checking the length of one of the columns (any column will do). 
 
length(nestlings$Hct) 
 

 
 

RESULT 
 
> length(nestlings$Hct) 
[1] 675	
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Correlations: strong, weak, positive and negative 
We talk about correlations being ‘strong’ or ‘weak’ and ‘positive’ and ‘negative’. The 
dataset corr_data has been set up to demonstrate what these terms mean: 
 
corr.data <- read.table('corr_data.csv',header=T,sep=',') 
 
par(mfrow=c(3,2)) # set the plotting window to 3x2 plots 
 
plot(Y1~X1, data = corr.data, ylim = c(0,30)) 
abline(lm(Y1~X1, data = corr.data), col = "red") 
cor(corr.data $X1, corr.data $Y1, method = "pearson") 
mtext("High r, positive slope: r = 0.996", side = 3, adj = 0) 
 
plot(Y2~X2, data = corr.data, ylim = c(0,80)) 
abline(lm(Y2~X2, data = corr.data), col = "red") 
cor(corr.data $X2, corr.data $Y2, method = "pearson") 
mtext("Low r, positive slope: r = 0.331", side = 3, adj = 0) 
 
plot(Y3~X3, data = corr.data, ylim = c(0,30)) 
abline(lm(Y3~X3, data = corr.data), col = "red") 
cor(corr.data $X3, corr.data $Y3, method = "pearson") 
mtext("High r, positive slope: r = 0.785", side = 3, adj = 0) 
 
plot(Y4~X4, data = corr.data, ylim = c(0,160)) 
abline(lm(Y4~X4, data = corr.data), col = "red") 
cor(corr.data $X4, corr.data $Y4, method = "pearson") 
mtext("High r, negative slope: r = -0.999", side = 3, adj = 0) 
 
plot(Y5~X5, data = corr.data, ylim = c(0,400)) 
abline(lm(Y5~X5, data= corr.data), col = "red") 
cor(corr.data $X5, corr.data $Y5, method = "pearson") 
mtext("Moderate r, negative slope: r = -0.666", side = 3, adj 
= 0) 
 
plot(Y6~X6, data = corr.data, ylim = c(0,160)) 
abline(lm(Y6~X6, data = corr.data), col = "red") 
cor(corr.data $X6, corr.data $Y6, method = "pearson") 
mtext("Low r, negative slope: r = -0.104", side = 3, adj = 0) 
 
The terminology can be a bit confusing because when someone talks about a ‘strong’ 
correlation, usually what is meant is that the correlation coefficient (r) is high. A strong 
positive correlation would be one with a very tight relationship (the data points all cluster 
around the line of best fit) but the slope might not be very steep so that the biological 
effect might not be especially strong. 
 
dev.off() # return plotting window to defaults 
 # note that this will 'blank out' your figures 
 # only run dev.off to clear your plotting screen 
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fig	2.	Scatterplots	demonstrating	strong	and	weak	correlations.	Note	that	a	 'strong'	
correlation	 only	 indicates	 that	 the	 points	 fall	 close	 to	 a	 line	 of	 best	 fit.	 A	 strong	
correlation	could	have	quite	a	weak	slope. 

 
  



	
	

58	

Variability Tests 
Regression Analysis :: t-tests :: ANOVAs etc 

 
Tests that use variability as a measure of 'noise' in the data are among the most 
commonly used and reported types of statistical tests. These include regression analysis, 
t-tests and Analyses of Variance (ANOVAs). These tests are often treated as distinct tests, 
but actually they all fundamentally act in the same way. All of them use variance as a 
measure of uncertainty in the data to decide whether a pattern might have occurred by 
chance. A Student's t-test will give you exactly the same P value as an ANOVA using the 
same data. Regression analyses and ANOVAs (and related tests) are all just forms of linear 
model, and you'll find they also give the same P values for the same datasets. 
 
A quick note on terminology: Just a warning. I am using 'variability family of tests' here to mean tests 
that are based on a signal:noise ratio, where the 'noise' is some measure of variance. There are also 
'variance tests' or 'tests of variance', that are used to test for differences in variance, such as a Bartlett 
test or a Fligner-Kileen test. Such tests can be used to test hypotheses of differing variances, but are 
more often used for testing the assumption of equal variance. I've added this note just to try and head 
off confusion about what I mean exactly by 'the variability family of tests' (i.e. we're not talking about 
Bartlett tests, or similar, here). 
 
Table 1. Types of Predictor, Covariate and Response variables and the appropriate test for each. A covariate 
is usually not the predictor of interest but is included to control for some other variable that is likely to be 
important. Covariates are typically numeric, and often continuous. ANOVAs and ANCOVAs are both forms 
of general linear model (LM). Because of computing power today, highly complicated GLMs can be 
generated using many Predictors that are both discrete and continuous. 
 
 

Predictor Levels Covariate Response Test 
Continuous NA Numeric Continuous Regression 

Discrete 2 No Continuous t-test 
Discrete 2+ No Continuous ANOVA 
Discrete 2+ Numeric Continuous ANCOVA 
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What is a covariate? 
A covariate is a numeric (often continuous) variable included in a general linear model 
that helps explain variation, but is usually not the variable of interest. Here's an example 
of how a covariate can be helpful. Let's imagine you measured stress hormones in people 
living in Calcutta and in the Indian countryside with the hypothesis that living in the city 
would be more stressful (predictor is discrete with two levels: city or country). Possibly, 
you might not find a relationship unless you took into account a third variable, the time 
a person has been living in a city. People who have just moved to a city might find it 
stressful, whereas people who were born in the city and grew up there might not find it 
stressful at all. In this case, the covariate helps explain the dependant variable (stress 
hormones in the blood) and it might allow us to see whether there is an effect of city 
living on stress, albeit one that is time dependent. 
 
 

What is a discrete variable? 
Discrete variables is an umbrella term for any variable that exists as a set of discrete 
parts. For t-tests and ANOVAs, the discrete variable we would most typically be working 
with would be nominal (also called categorical), where the predictor is entered into a 
spreadsheet as a set of words: Low, Medium, High, or, Male, Female, or Present, Absent. 
In R these should appear as the 'factor' data type, although they may import as 
'characters' instead which can cause problems. After importing a dataset that has 
nominal data it is sensible to make sure all the nominal columns are actually factors by 
looking at the structure of the data. If something is not a factor, you can tell R that it 
should be a factor, as below. 
 
Check the structure of the dataset: 
str(yourdata) 
 
Change a variable to a 'factor' in R: 
yourdata$your_variable <- as.factor(yourdata$your_variable) 
 
Change a variable to a 'number' in R: 
yourdata$your_variable <- as.numeric(yourdata$your_variable) 
 
Note that the second line of code will only work if the variable could actually be a 
number. If a column of data contains letters, words or symbols, R will not be able to turn 
the data into numbers. 
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How is a t test comparison made? 
The key point of the t-distribution is that it changes shape with different degrees of 
freedom. By comparing two t-distributions we can calculate the difference between the 
means and divide this by the noise (variance) of the distributions. Classically, especially 
before computers, t-tests were calculated using the assumption that both populations 
had the same variance (an equal variance Student's t-test), as that makes the equation 
much easier to work out. Now, t-tests are more sophisticated and the degrees of freedom 
are typically adjusted to account for differences in variance between the two samples (an 
unequal variance Welch's t-test). 

 

signal	/	noise		 t	=	difference	of	group	means	/	variability	of	groups	
	 	 	 t	=	Xmean	-	Ymean	/	SE(X	-	Y)	
  
The t-test signal to noise ratio is called a t-statistic. Whether it is positive or negative 
isn't important because that simply depends on which mean happened to be larger. In 
the past, you would take the non-signed t-statistic, decide on a significance level (usually, 
alpha = 0.05) and look up significance on a table. Current statistical programs can provide 
exact P-values for a test instead of estimates from a table. 
 
So, in essence, what the test is doing is 1) working out a signal to noise ratio (the t-value 
= how strong is the pattern here?); 2) establishing what the distribution for possible t-
values should look like based on your sample size (higher df = thinner tails, which implies 
greater confidence about where our t-value falls); 3) checking our actual t-value against 
the distribution of possible t-values. If there is a 5% or less chance of getting out t-value 
by chance (given the null were true), then we take that to be a significant result. 
 
 

 
 
Figure 1. An example of a table for t-test results with different critical levels for significance at the 0.20, 
0.15, 0.10, 0.05, 0.01, 0.005, 0.001 and 0.0005 levels (reading across the columns) and degrees of freedom 
from 1 to 9 (reading down the rows). If a t-value equals or is larger than the critical value for a given df 
and significance level, then the result would be significant at that level. Typically, the critical value α = 
0.05 would be used, which corresponds to the column under t0.05. 
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Figure 2. Two populations of dolphin measured for morphometric traits. On the left, difference between 
the means of groups is small and the variability (noise) is large. Probably, we would find the difference is 
non-significant (P > 0.05) if we ran a t-test. On the right the difference between means of groups is large 
and in comparison the variability (noise) is relatively small. Probably, we would find the difference is 
significant (P < 0.05) if we applied a t-test. 
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Assumptions of variability tests 
Because t-tests, regression analyses and ANOVAs all function in the same way, they are 
all concerned with assumptions of normality and equal variance. Although you can get 
away with slight departures from normality (these tests are actually relatively robust to 
small problems with normality), you will very much run into trouble if you have 
increasing variances with higher means. So, what do you do, if assumptions are not met? 
 
Usually, the first step is to try transforming the response variable. Any mathematical 
operation that manipulates the data as a whole so that it retains its overall order and 
sequence but the distribution is changed (usually into a normal distribution). The object 
of transformation is usually to change non-normal or non-linear data into normal or 
linear data. A log transformation for example, logs all the response values. A square root 
transformation takes the square root of all the response values. Sometimes we transform 
predictors as well, but that is unusual and probably if you think you need to transform 
predictors actually you need to rethink if you are using the correct statistical analysis. 
 
Once you apply transformations, new columns will be created and these new columns 
become your response variables. A transformation changes the 'shape' of the data but 
not the 'order' of the observations. So, if we had a series of observations that looked 
like this… 
	

1 
2 
5 
14 
106 
2205 

	
We might decide they need to be transformed to be more easily analysed. They might 
be transformed like this, using a log transformation: 
	

Original value Log transformed value 
1 0.00 
2 0.30 
5 0.70 

14 1.15 
106 2.03 

2205 3.34 
	
Notice how the numbers have been changed so that they are closer together, but the 
order hasn't changed. The largest value is still the largest. The smallest value is still the 
smallest. 
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Transformations 
Researchers talk about 'applying a transform' or 'applying a transformation', 
'transforming the data' or 'working with transformed data'. These all mean the same 
thing: the data has been changed mathematically to make it more normal and/or more 
linear. 

 
What	do	we	need	to	know	at	a	basic	level?	

• Typically, only the RESPONSE (dependent variable) is transformed 
• Transformation involves loss of information 
• Better not to do if you can avoid it (bit of a trade-off) 
• Never graph transformed data in a final report (ok to do this in an exploratory analysis 

for your own benefit) (even if you use transformed data in your tests) 
• Sometimes transformation is unavoidable 

 

Code for Transformations 
To make life easier we can set up a dummy variable called x and drop a RESPONSE into 
it like so: 
 
x <- yourdata$RESPONSE  

 
Now apply various transformations 
 
yourdata$INVR <- 1/x # Reciprocal transformation 
yourdata$NEGINV <- -1/x # Negative reciprocal transformation 
yourdata$SQUARED <- x^2 # Power transformation 
yourdata$CUBERT <- x^(1/3) # Cube root transformation 
yourdata$SQRT <- sqrt(x) # Square root transformation 
yourdata$LOG <- log(x)  # Log base e. Cannot be applied to zero 
yourdata$LOG10 <- log10(x)  # Log base 10 Cannot be applied to zero 
yourdata$ASQRT <- asin(sqrt(x)) # Arcsine square root transformation 
 # Only useful for percentages (0.01-0.99) 
yourdata$LOGIT <- log(x/(1-x))  # Logit transformation 
 # Only useful for percentages (0.01-0.99) 
yourdata$FOLD1 <- sqrt(x)/sqrt(1-x) # Square root folded transformation 
 # Only useful for percentages (0.01-0.99) 
yourdata$FOLD2 <- log(x)/log(1-x)  # Log folded transformation 
 # Only useful for percentages (0.01-0.99) 
yourdata$FT <- sqrt(x) + sqrt(x+1)  # Freeman-Tukey transformation 

	
Now look at your dataset: 
 
head(yourdata) 
View(yourdata) 
str(youdata) 
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Note how the transformations will have been added as columns to the end of your 
dataset? These are your potential response variables now. You need to check if they have 
met assumptions (by checking boxplots and residuals of models etc). Generally speaking 
you’ll want to pick the transformation that best meets assumptions, although sometimes 
you might decide to pick a simpler transformation over a more complex transformation 
if the difference between them isn’t substantial. Picking the best transformation is a bit 
of an art rather than something that has hard and fast rules. Often a lot of boxplots and 
histograms will be needed to work out which transformation is preferable. 
 

Advanced Transformations 
If all of the above transformations fail to meet the assumptions of the data you can try 
two advanced transformations: 
 

BOXCOX TRANSFORMATION 
 
install.packages("MASS") # install library from web 
library(MASS) # load library 
 
fit <-lm(RESPONSE~TREATMENT,data=yourdata) 
bc <- boxcox(fit) 
lambda<-with(bc, x[which.max(y)]) 
yourdata$bc <- ((x^lambda)-1)/lambda) 
boxplot(bc ~ TREATMENT, data = yourdata) 
 
 

RANK NORMAL TRANSFORMATION 
 
install.packages("GenABEL") # install library from web 
library(GenABEL) # load library 
 
yourdata$RANK.NORMAL <- rntransform(yourdata$RESPONSE) 

 
Are there any types of data that are always transformed? 

• Percentages and ratios often need to be transformed 
• Arcsine square root transformations are often used for percentages 
• Log transformations are often used for ratios 
• Square root transformations are also used for ratios, especially if some values 

are zero. 
 

What if no transformation seems to help? 
If none of the transformed values seem to fit assumptions of a test, then possibly you are 
using the wrong test. If you have a dataset where the response is a count and there are 
a lot of zeroes, then no amount of transformation will make it fit ANOVA assumptions 
and you need to start thinking about other tests such as GLMs.  
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t-tests 
We usually think of a t-test as comparing two samples comprised randomly selected 
individuals from a population. However, one-sample t-tests and paired t-tests also exist. 
We will start with a one sample t-test. 
 

One sample t-test 
A one-sample t-test provides confidence intervals for a single set of data points. The test 
assumes the comparison dataset is normally disturbed and that the observations are 
independent. It can be used to test whether a single data point falls within a range of 
expected values. 
 

ASSUMPTIONS OF ONE SAMPLE T-TESTS 
(1) The comparison datasets is normal 
(2) Observations must be independent (collected randomly) 

 
Import the adult house swallows dataset: 
swallows <- read.table('swallows-adults.csv', 
header=T,sep=',') 
 
Check the data: 
head(swallows) 
str(swallows) 
 
Run a one sample t-test on Wing Lengths of the adult swallows: 
t.test(swallows$WingL) 
 

 
 
So we appear to have a significant result. But significant by comparison to what? Exactly 
what is this test reporting?  

RESULT 
 
 One Sample t-test 
 
data:  swallows$WingL 
t = 475.39, df = 110, p-value < 2.2e-16 
alternative hypothesis: true mean is not equal to 0 
95 percent confidence interval: 
 112.9416 113.8872 
sample estimates: 
mean of x  
 113.4144 
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 One Sample t-test 
 
data:  swallows$WingL 
This is simply a reminder what data we used for the t-test. 
 
t = 475.39, df = 110, p-value < 2.2e-16 
The t-value (signal to noise ratio), degrees of freedom, and p-value. Although all three of these 
values would be reported, typically, only the P value would be discussed. 
 
alternative hypothesis: true mean is not equal to 0 
This is telling us that the test is comparing the wing lengths to a value of zero. That is, it is 
asking if the true mean of the dataset is zero. This is not especially useful or interesting. We'll 
look at how to modify this below. 
 
95 percent confidence interval: 
 112.9416 113.8872 
The 95% confidence interval for mean of wing lengths of swallows. We have a 95% confidence 
that the mean is no lower than 112.9 mm and no higher than 113.9 mm. 
 
 
sample estimates: 
mean of x  
 113.4144 
The estimated mean of the swallow wing lengths in mm. 
 
How might we use a one-sample t-test. The test is useful if you only have a single value 
and you want to compare it to a sample. Imagine you caught a purple swallow. It looks 
like your blue welcome swallows except for feather colour. You are curious as to whether 
it is a vagrant species, or maybe a mutation, so you take measurements. Perhaps we want 
to compare the wing length of the purple swallow to the sample of blue swallows. We 
can use mu in the t-test code to change the value for comparison. Assume you obtained 
a wing length of 113.1 mm for the purple swallow. 
 
t.test(swallows$WingL, mu = 113.1) 
 
Try running the above test and determine whether the purple swallow had a significantly 
different wing length to the estimated mean wing length of welcome swallows. As well 
as looking at the P value, have a look at the confidence interval for the welcome sallow 
wing lengths. Did the confidence interval change from what we obtained above? Why or 
why not? 
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Two sample t-test (unpaired) 
A two-sample t-test allows you to compare the means of two samples and determine 
which (if either) is higher. We will use this data to check masses of swallows by sex. 
 

ASSUMPTIONS OF STUDENTS T-TEST 
(1) Observations must be independent (collected randomly) 
(2) Both datasets are normal 
(3) Equal variances 

 
The presence or absence of a broodpatch on a swallow indicates if it is a female or male. 
Females brood but males do not (or only seldom), so females acquire a discoloured 
brooding patch whereas males tend not to. Using the adult swallows dataset we want to 
investigate whether male or female adult welcome swallows are heavier on average. We 
will use a two-sample t-test to test this. 
 
First, recheck your data. The BROODPATCH value needs to be factor. Use	
str(swallows)	to check it. 
 
The researcher has recorded the data as a set of binary numbers (1 = no and 2 = yes) but 
R doesn't know that these are supposed to be two levels of a single factor. We can change 
this using a line of code. 
 

swallows$BROODPATCH <- as.factor(swallows$BROODPATCH) 

 
Now rerun the	str(swallows)	command and check that BROODPATCH has changed 
to a factor with 2 levels. The next thing to do is check the assumptions. Now we will 
look at assumptions. 
 

(1) Datasets must be independent (collected randomly) 
There are no tests for independence that are especially useful. Really, this is a matter of 
good experimental design and understanding what problems are associated with 
pseduoreplication.	
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(2) Are the datasets normal? 
Check boxplots of the data. If the boxplots are (reasonably) symmetrical they are 
probably at least bell-shaped, although may not be strictly normal. 	
	
boxplot(MASS~BROODPATCH,data=swallows) 
	
There are a number of different ways to look at each level within the factor separately 
(i.e. look at birds with brood-patches and without brood-patches) but the most 
straightforward is simply to subset the data. We'll attach the dataset to make the code 
easier (when a dataset is attached R assumes you are working with that dataset unless 
told otherwise… this reduces the need to keep typing the name of the dataset over and 
over). 
	
attach(swallows)	
brood.yes <- subset(swallows, BROODPATCH=='2') 
brood.no <- subset(swallows, BROODPATCH=='1') 
	
Check histograms of the data. 
	
hist(brood.yes$MASS) 
hist(brood.no$MASS) 
	
You can also use a Shapiro-Wilk's test of normality, where we would take P < 0.05 to 
indicate that the assumption of normality may have been broken. However, distribution 
tests, such as Shapiro-Wilks, tend to be quite aggressive and they often diagnose 
distribution problems when the data is probably fine for a t-test or similar. Visual 
assessments of boxplots and histograms is usually preferable. 
	
shapiro.test(brood.yes$MASS) 
shapiro.test (brood.no$MASS) 
	
detach(swallows)	
It is usually good practise to detach your dataset after working with it. 
 
 
  



	
	

69	

Let's look at our plots. The boxplots don't look too bad, but the histograms are potentially 
not normal.	
	

	
 
Keeping in mind that Shaprio-Wilks tests can tend to indicate that most biological data 
is non-normally distributed , let's check these distributions and see what the results 
are. Where P<0.05, we would take this to be evidence that the distribution may not be 
normal. 
 

 
 
  

RESULT 
 
> brood.yes <- subset(swallows, BROODPATCH=='2') 
> shapiro.test(brood.yes$MASS) 
 
 Shapiro-Wilk normality test 
 
data:  brood.yes$MASS 
W = 0.96923, p-value = 0.1472 
 
 
>  
> brood.no <- subset(swallows, BROODPATCH=='1') 
> shapiro.test(brood.no$MASS) 
 
 Shapiro-Wilk normality test 
 
data:  brood.no$MASS 
W = 0.94083, p-value = 0.01106 
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The distribution of masses for swallows without a brood-patch is a bit suspect. At this 
point I would consider using a non-parametric equivalent of a t-test (Mann-Whitney U: 
wilcox.test in R). However, we are going to use this data for non-parametric tests 
later, and it would be good to compare the results to the t-test results. Let's proceed to 
checking equal variances. 
 

(3) Equal variances? 
Check boxplots of the data. If the boxplots are (reasonably) symmetrical and (about) the 
same height, then the variances are probably equal. You can also try using a test of equal 
variances. The Bartlett test is suitable for this purpose.	
	
boxplot(MASS~BROODPATCH,data=swallows) 
bartlett.test(MASS~BROODPATCH,data=swallows) 
 
We already have the boxplot (above), so let's look at the result of the Bartlett Test. 
 

 
 
The assumption of variances doesn't seem to be met here. A significant P value (P < 
0.05) is usually taken to indicate that the variances may not be equal. However, rather 
than resort to a non-parametric test (or transformation), we can use a different sort of t-
test, the Welches unequal variance t-test, which is actually the default in R. 
 

ASSUMPTIONS OF WELCH'S T-TEST 
(1) Observations must be independent (collected randomly) 
(2) Both datasets are normal 

 
The Welch's t-test penalised the degrees of freedom for unequal variances. Also, as it 
turns out, if the variances are perfectly equal a Welch's t-test collapses into a Student's 
t-test anyway. This means that you might as well just always use the Welch's t-test. We'll 
look at how to run both though.  
	 	

RESULT 
 
> bartlett.test(MASS~BROODPATCH,data=swallows) 
 
 Bartlett test of homogeneity of variances 
 
data:  MASS by BROODPATCH 
Bartlett's K-squared = 5.0971, df = 1, p-value = 0.02397	
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Run a classic equal variances (Student)  t-test. 
 
t.test(MASS~BROODPATCH,data=swallows, var.equal=TRUE) 
	

	
 
Run a Welch's t-test that allows for unequal variances. By leaving out the command 
var.equal=TRUE, the test will default to a Welches test. 
 
t.test(MASS~BROODPATCH,data=swallows) 
	

	
 
You can see that there is a slight difference in t-value, and the degrees of freedom have 
been penalised by the Welch's t-test. They are 109 for the equal variance t-test, but 104.2 
for the Welch's. The P value is different, but in both instances the P value is strongly 
significant. The Welch's t-test would be the preferable t-test to use here (variances are 
clearly not equal), and if reported in brackets in a Results section it would look something 
like this (t = -4.72, df = 104.2, P < -.001). 
  

RESULT 
 
 Two Sample t-test 
 
data:  MASS by BROODPATCH 
t = -4.6563, df = 109, p-value = 9.134e-06 
alternative hypothesis: true difference in means is not equal 
to 0 
95 percent confidence interval: 
 -0.9822838 -0.3957253 
sample estimates: 
mean in group 1 mean in group 2  
       13.70755        14.39655	
	

RESULT 
 
 Welch Two Sample t-test 
 
data:  MASS by BROODPATCH 
t = -4.7206, df = 104.2, p-value = 7.353e-06 
alternative hypothesis: true difference in means is not equal 
to 0 
95 percent confidence interval: 
 -0.9784383 -0.3995708 
sample estimates: 
mean in group 1 mean in group 2  
       13.70755        14.39655	
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Effect sizes for t-tests 
It is generally a good idea to report an effect size as well as the results of any statistical 
test. For t-tests, the most straightforward effect size is simply the difference between the 
two means (making sure to make it clear which mean is higher). A standardised effect 
size for t-tests, however, does exist, and is called a Cohen's d. 
 
The Cohen's d is a measure of difference in means between two groups given the 
standard deviation as a whole. A Cohen's d isn't often used for publication in biological 
sciences journals (although psychologists like to use it), but it is certainly acceptable in 
university reports as a way to summaries the strength of difference between two 
populations. 
 
install.packages("lsr") 
# Download library from the internet. 
# Only needed if you haven't already installed the package 
 
library(lsr) 
cohensD(MASS~BROODPATCH,data=swallows) 
 
[1] 0.8848034 
 
The author of the statistic, Cohen, suggested that d = 0.2 be considered a 'small' effect 
size, 0.5 represents a 'medium' effect size and 0.8 a 'large' effect size. This means that 
where you obtain a Cohen's d of <0.5, you should consider the difference to be 
biologically modest, even if the difference is also significant. The effect we obtained, 
where d = 0.88 would suggest that there is a large effect of mass as a function of swallow 
sex. 
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Further Example: Tails 

Some researchers have suggested that swallow tails may serve a sexual selection 
function. If this were the case we might expect tail lengths to differ among males and 
females. Import the adult swallows dataset if you haven't already. 
	
Import the adult swallows dataset: 
swallows <- read.table('swallows-adults.csv', 
header=T,sep=',') 
 
Check the data: 
head(swallows) 
str(swallows) 
 

t-test steps 
1) Create of boxplot of tail length (mm) by brood-patch (a proxy for sex where 1 = no 
brooding patch (male), and 2 = brooding patch (female)). 
 
boxplot(TailL~BROODPATCH,data=swallows)	
 
2) Check the assumption of normal data 
3) Check the assumption of equal variances 
4) Decide which test is appropriate and run the appropriate test 
5) Check the results 
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Two sample t-test (paired) 
Paired t-tests are more powerful than unpaired tests because in a paired experimental 
design some of the noise in the background is eliminated by pairing controls and 
treatments together in the same conditions. 
 

ASSUMPTIONS OF PAIRED T-TEST 
(1) Observations must be independent (collected randomly) 
(2) Both datasets are normal 
(3) Equal variances (there is no Welch's version of a paired test) 
(4) Data is from a paired experimental design 

 
 

	
	
Figure	3.	Paired	experimental	designs	are	more	powerful	than	random	two-sample	designs	and	a	paired	t-test	
takes	this	into	account.	White	boxes	=	control	sites.	Red	boxes	=	treatments.	
	
Import the mean seedling height paired and unpaired data sets. These contain mean 
measurements of seedlings in 400 m2 quadrats measured in forest plots. The hypothesis 
being tested is that the plants in this forest are boron limited. Boron is an element that 
is essential to plant growth and some soils are low in boron. At treatment sites boron 
has been applied, whereas at control sites an inert powder has been applied. 
 
Import the mean seedling height datasets: 
	
msh.p <- read.table('msh-paired.csv',header=T,sep=',') 
msh.u <- read.table('msh-unpaired.csv',header=T,sep=',') 
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Look at the way the data is laid out. Paired and unpaired datasets have quite different 
expectations around data layouts. We're going to skip assumption testing just for the 
sake of time, but remember that you must test assumptions if you plan to report results. 
View(msh.p) 
View(msh.u)	
 
Run a Welch's t-test, allowing for unequal variances on the unpaired data: 
t.test(MSH.400m2~TREATMENT, data=msh.u) 
	

	
	
Now run a paired t-test on the paired data: 
t.test(msh.p$CONTROL, msh.p$TREATMENT, paired=T) 
 

	
	
These data sets are exactly the same except that one is paired and the other is not. What 
are the P-values that you obtained? Is one result significant when the other is not? Why 
is this the case? What does pairing do to the 'power' of a test?	 	

RESULT 
 
 Welch Two Sample t-test 
 
data:  MSH.400m2 by TREATMENT 
t = -0.9364, df = 21.978, p-value = 0.3592 
alternative hypothesis: true difference in means is not equal 
to 0 
95 percent confidence interval: 
 -1.2296869  0.4646869 
sample estimates: 
  mean in group control mean in group treatment  
               4.495833                4.878333	
	

RESULT 
 
 Paired t-test 
 
data:  msh.p$CONTROL and msh.p$TREATMENT 
t = -3.4057, df = 11, p-value = 0.00587 
alternative hypothesis: true difference in means is not 
equal to 0 
95 percent confidence interval: 
 -0.6296955 -0.1353045 
sample estimates: 
mean of the differences  
                -0.3825	
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Regression Analysis 
Simple linear regression generates a mathematical model that relates the magnitude of 
one variable to that of another. The general equation of a straight line is: 
 

y	=	a	+	bx	
 
…where a is the y–intercept (value of x when y = 0) and b is the slope of the line (rate at 
which y changes per unit change in x). Importantly, when the slope of the line (i.e., b) 
equals zero, there is no relationship between the response (dependant) (Y) and predictor 
(independent) (X) variables. Linear regression summarises how the average values of one 
variable (the dependent or response variable) vary across a range of subpopulations 
defined by a linear function of the other variable (the independent or predictor variable). 
 
The value of y when x is zero is equal to a. This is the intercept on the vertical axis. 
 

y	=	a	+	bx	
y	=	a	+	b	*	0	
y	=	a	+	0	
y	=	a	

 
The value of a when y equals zero is -bx. This is the intercept. 
 

y	=	a	+	bx	
y	-	bx	=	a	
0	-	bx	=	a	
-	bx	=	a	

 
 

ASSUMPTIONS OF LINEAR REGRESSION 
(1) Residuals are normally distributed 
(2) Residuals must be independent (collected randomly) 
(3) Residuals have equal variances (homoscedasticity) 
(4) The relationship of x and y should be (relatively) linear 
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Assumptions of Linear Models 
 
One set of tests that require fairly involved assumption testing are linear models. These 
include regression analyses, ANOVAs and ANCOVAs, and all the variants thereof. The 
following diagram provides a walk-through for testing linear model assumptions. Note 
that for a linear model it is the residuals of the model that need to meet assumptions of 
normality and equal variance, not the original data. 
	

	
 
Note that the above diagram always applies to linear models, but if you have multiple 
predictors then you will have a couple of additional steps as well 1) checking that 
predictors are not correlating and 2) checking for significance of interaction terms. 
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Regression Analysis Example 
We're going to use our nestling swallows dataset again, but this time we will test 
whether haemoglobin concentration in the blood (an indicator of health and parasite 
levels) has an effect on the mass of house swallow chicks at day 12 after hatching (an 
indicator of growth rate). Our hypothesis is that: 
 

• House swallow chicks with a higher Hb will have a higher mass at day 12 
 

	
Figure	4.	Plot	of	mass	(g)	of	house	swallow	chicks	at	day	12	after	hatching	against	haemoglobin	

concentration	in	the	blood	(g/dL).	
 
 
Given the hypothesis we have proposed above, what would the null be? 
 

Testing Assumptions 
Sometimes you will find advice about testing assumptions of the underlying data for a 
regression analysis. Strictly speaking, the assumptions of a regression analysis apply to 
the residuals (values above and below expected) of the linear model, not the original 
data. Checking the residuals is most easily done in R by using diagnostic plots. 
 

Wait… shouldn't we test residuals to the means for t-test then? 
Actually, you could if you wanted to. A t-test is such a simple model, though, that in 
principal the result of assumption tests applied to the original data should be the same 
as the assumption tests applied to residuals taken to the means. Because testing 
residuals taken from the means would be a bit more involved, there is a tendency to just 
check the original data instead. 
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Diagnostic Plots 
One very helpful feature of R is that it will generate diagnostic plots that help determine 
whether or not data is normal and whether there are outliers that are over-influencing 
the data: 
 
nestlings <- read.table('swallows-nestlings-blood.csv', 
header=T,sep=',') 
 
Set your window so that it will accept four plots at once (otherwise you need to click 
through the graphs): 
par(mfrow = c(2, 2)) 
 
Plot the linear model diagnostic plots. This is done simply by plotting the model. 
plot(lm(MASS.DAY12 ~ Hb.g.dL, data = nestlings)) 
	
You should get a plot that looks like this: 
	

	
	

	
Reset your plotting window back to a single figure at a time to avoid future confusion: 
par(mfrow = c(1, 1))  
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Residuals vs Fitted 
Used to check linearity and homogeneity of variances. The red line should be (relatively) 
straight and horizontal for the data to be linear. The cloud of data should be (relatively) 
amorphous (cloud like), and should not have a 'wedge' or 'arrowhead' shape. Assessment: 
Our red line seems straight and horizontal. The cloud of data is perhaps a little 'pointy' to the 
right, but it isn't forming a clear arrowhead shape. This suggests the model is relatively linear 
and the variances of the model are relatively equal across the range of the predictor. 
 

Normal Q-Q Plot 
Used to check normality of residuals. The horizontal axis plots the values that the 
residuals should show if the residuals were perfectly normal. The vertical axis shows the 
actual residuals. It follows then that if the data is departing from normality, the dots (real 
vs theoretical residuals) would wander off the red line, which represents a perfect 1:1 
relationship. Assessment: Our data seems to have some normality problems at the lower end 
of its range. Biological data is often non-normal, and we might decide to accept the departure 
from normality here (it's probably a bit borderline and depends on how conservative you want 
to be). If we were concerned about the normality we would use a non-parametric correlation 
test (e.g. Kendall tau) instead. 
 

Scale-Location 
Used to check linearity and homogeneity of variances. You read this plot in the same way 
as the Residuals vs Fitted plot. The Residuals vs Fitted plot is consider a (slightly) better 
diagnosis plot for linearity, whereas the Scale-Location is considered a (slightly) better 
diagnosis plot for equal variances. Assessment: Very similar to our interpretation for the 
Residuals vs Fitted, above. The two plots appear to be in agreement. 
 

Residuals vs Leverage 
This is not strictly speaking an assumption test at all, rather it is checking whether there 
are any data points that would have a significant effect on the model if removed. This 
can be thought of as a test for statistical outliers. If a data point is on the other side of 
the 0.5 or 1.0 Cook's Distance (from the rest of the data), then it is having a substantial 
independent affect on the model as a whole. Assessment: All our data points are sitting in 
a cloud to the left of the Cook's distance lines. All is okay then. 
 

What to do with Outliers? 
My standard advice is that unless you have a strong reason to believe that an outlier was 
due to human error or machine error, you should leave it in the data. The reason for this 
is that removing outliers can lead to a temptation to start 'adjusting' the data so that it 
fits expectations (i.e. the hypothesis), which is far from ideal. 
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Scatterplot in Library 'car' 
The scatterplot function in library car also provides a clear visual assessment of linearity 
and whether variance (uncertainty) around a line of best fit might be increasing. 
 
install.packages("car") 
# Download library from the internet. 
# Only needed if you haven't already installed the package 
 
library(car) 
scatterplot(MASS.DAY12 ~ Hb.g.dL, data = nestlings) 
 

 
 
The plot fits a straight line (green, solid), and loess smoothed lines (red) with 50% 
confidence intervals above and below the line (dashed red). If the confidence intervals 
form a 'funnel' then there is probably a problem with variance changing across the range 
of the predictor. You can modify the plot using standard graphic parameters as well as 
some parameters built into the function. The boxplots are plotted automatically, but can 
be switched off by setting to false. Use the following code to bring up a help menu and 
check the options. 
 
?(scatterplot)	
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Overall Assessment 
Given the way the data points are wandering off the Q-Q line, it might be preferable to 
either transform the data to achieve normality of residuals, or use non-parametric tests. 
Nonetheless, it is a bit of a borderline call here. Although the QQ plot is not ideal, 
regression analyses are (somewhat) robust to (small) departures from normality. 
 
For simplicity, we're going to leave the data as is, and proceed with the analysis. Run the 
following code. 
 
nestlings.lm <- lm(MASS.DAY12 ~ Hb.g.dL, data = nestlings) 
summary(nestlings.lm)	
	
You could also 'pipe' the code using the tidyverse syntax if you like: 
 
library(tidyverse) 
	
lm(MASS.DAY12 ~ Hb.g.dL, data = nestlings) %>% 
summary()	
	
Or you can pile everything into a single line of code, but keep in mind you are risking 
annoying errors if you use this approach: 
 
summary(lm(MASS.DAY12 ~ Hb.g.dL, data = nestlings))	
	

	
	
	
	 	

RESULT 
 
 Call: 
lm(formula = MASS.DAY12 ~ Hb.g.dL, data = nestlings) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-14.7546  -0.5427   0.2014   0.9954   4.7767  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept) 14.35776    0.48662  29.505  < 2e-16 *** 
Hb.g.dL      0.15670    0.03581   4.376  1.4e-05 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 1.789 on 673 degrees of freedom 
Multiple R-squared:  0.02767, Adjusted R-squared:  0.02623  
F-statistic: 19.15 on 1 and 673 DF,  p-value: 1.398e-05	
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Call: 
lm(formula = MASS.DAY12 ~ Hb.g.dL, data = nestlings) 
 
This is simply a reminder what linear model we have just run. 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-14.7546  -0.5427   0.2014   0.9954   4.7767  
 
These are the ranges, upper and lower quartiles and median of the model. These are the same 
values used to make a boxplot. You typically wouldn't report these values in a Result section. 
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept) 14.35776    0.48662  29.505  < 2e-16 *** 
Hb.g.dL      0.15670    0.03581   4.376  1.4e-05 *** 
 
These are the effect sizes Estimate) standard error of the effect sizes (Std Error), t-
value and P value Pr(>|t|). These are the values that you would report in a Results section 
either in brackets or in a table. Remember that any value of P that is very small (as is the case 
here) would be reported as P < 0.001. We would not report these as P = 0.0000000000000002 
or P = 0.000014, which are the actual P values that have been returned. 
 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
These codes for symbols indicating different significance levels. For our purposes we are 
going to stick with the standard 0.05 significance level. 
 
Residual standard error: 1.789 on 673 degrees of freedom 
 
The residual standard error (unexplained variance) for the whole model and the degrees of 
freedom for the residual variance. You typically wouldn't report these values in a Results 
section. 
 
Multiple R-squared: 0.02767, Adjusted R-squared: 0.02623  
 
The Multiple R2 and Adjusted R2 for the whole model. Typically, you would report the 
Adjusted R2 (assuming you want to report an R2), as this takes into account departure from 
parsimony effects caused by using multiple predictors. 
 
F-statistic: 19.15 on 1 and 673 DF,  p-value: 1.398e-05 
 
F-value, degrees of freedom and P for the whole model. Again, this is typically not reported 
in a Result section. 
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Plotting the regression model 
You can have a go at plotting the residuals of the model, if you like. These residual 
plots are typically not reproduced in scientific papers, but it can be useful to know how 
to make one. 
 
First, make sure that the model is constructed: 
nestlings.lm <- lm(MASS.DAY12 ~ Hb.g.dL, data = nestlings) 
 
par(mfrow = c(1, 1)) # reset to one graph per display 
 
plot(MASS.DAY12~Hb.g.dL, pch = 16, data = nestlings) 
 
abline(lm(MASS.DAY12~Hb.g.dL, 
data = nestlings),col="red",lwd=3) 
# lwd = line width 
 
segments(nestlings$Hb.g.dL, fitted(nestlings.lm), 
nestlings$Hb.g.dL, nestlings$MASS.DAY12,col="blue",lty=3) 
# lty = line type. Try line types = 2, 4 or 5 if you like. 
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Multiple Regression 
Multiple Regression is just a term for a regression analysis that has two or more 
continuous predictors. There is nothing about it that is much more complicated than a 
simple regression, except that now you need to check for interaction terms. In principal 
though, checking interaction terms is the same process as for ANOVAs, so we will deal 
with that in the next section. 
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ANOVA, ANCOVA & related models 
An Analysis of Variance (ANOVA) is one of the most commonly used tests that you will 
see in the biological sciences literature. It is a form of variance analysis and is related to 
a t-test. 
 
An ANOVA tests the null hypothesis that all means of response variables for groups are 
the same. 
 
In practice, this means that an ANOVA can be used to tell whether different treatment 
levels are associating with different means of the response variable. As an example, 
consider an experimental set-up where we are growing tomato plants under full light, 
partial shade and heavy shade. This experiment has one response variable (height of the 
tomato seedlings at week 10) and three levels (light, shade, heavy shade) of a single 
factor (lighting treatment). Although the test is asking is there a difference in the mean 
values of seedling height among the groups, the usefulness is that from this we can 
determine whether a particular lighting treatment is associating with different levels of 
seedling growth. 
 
It is perhaps a little complicated, but in a sense, an ANOVA asks a question about 
differences in order to address a question about trends. 
 
An ANOVA compares residuals in a way that is similar to how a regression model works 
except that residuals are taken from the mean of each group rather than across a range 
of values. An F-ratio is derived from the variance of the residuals. 
 
F	=	signal	/	noise	
F	=	variance	between	treatments	/	variance	within	treatments	
F	=	mean	squares	of	treatment	/	means	squares	of	the	error	
F	=	[sum	of	squares	of	treatment	/	[(T-1)]	/	[sum	of	squares	of	error	/	(n-1)]	
 
The F-ratio is conceptually very similar to the t-value. It is a measure of the signal to 
noise in the data. It is equivalent to: 
 
F	=	explained	variance	/	unexplained	variance	
 
This means that an F ratio is somewhat similar to an R2 value, except that instead of 
dividing by total variance (i.e. and then getting percentage of total variance explained), 
we obtain a ratio of the explained to unexplained variance. 
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ASSUMPTIONS OF ANOVAs (and ANCOVAs etc) 
(1) Residuals are normally distributed 
(2) Residuals must be independent (collected randomly) 
(3) Residuals have equal variances 

 
OTHER PROBLEMS MAY OCCUR IF… 
(1) Predictor variables correlate (r > 0.6 considered problematic) 

(two variables explain the same thing) 
(2) The model is over-parameterised 

(too many predictors given your data set size) 
(3) You fail to check for significance of interaction terms 
 (your main effects could be meaningless) 

 
ANOVAs are relatively robust to departures from the assumption of normality. However, 
if variances are not equal and if variances of residuals are proportional to the predictor 
variable(s), serious problems can develop. Independence of residuals must also be 
maintained. If not, pseudoreplication can result, and your P-values will likely be far 
stronger than they should be. 
 

Terminology 
ANOVAs have acquired a set of terminology that is confusing when first encountered and 
is arguably out-dated. The distinction between a one-way and two-way ANOVA was more 
important when ANOVAs were calculated using dedicated statistical calculators that 
might take hours or days to programme, and a two-way ANOVA might be all that was 
feasible. Now, it is sometimes preferable to refer to a test in the ANOVA family as a 
general linear model.  
 

 
 
Figure	6.14.	Wang	462	Statistical	Programmable	Calculator	from	about	1975.	
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Table	6.3.	Experimental	designs	and	appropriate	formulas	for	ANOVAs	in	R.	y	is	the	response	variable.	A,	B	
and	W	are	explanatory	factors	(discrete	variable).	x1	and	x2	etc	are	covariates.	
All	formula	use:	aov(formula , data = your.data).	
	

Design Formula 
One-way ANOVA y ~ A 
 
One-way ANCOVA with one 
covariate 

y ~ x * A 

 
Two-way Factorial ANOVA 

y ~ A * B 

Three-way Factorial ANOVA y ~ A * B * C 

Four-way Factorial ANOVA y ~ A * B * C * D 

Two-way Factorial ANCOVA with 
two covariates y ~ x1 * x2 * A * B 

Nested ANOVA Y ~ A/B/C 

Split-plot ANOVA Y ~ A * B * C + Error(A/B/C) 

Randomised Block (where B is 
blocking factor) y ~ B + A 

 
One-way within-groups (repeated 
measures) ANOVA 

y ~ Error(Subject/A) 

 
Repeated measures ANOVA with 
one within-groups factor (W) and 
one between-groups factor (B) 

y ~ B * W + Error(Subject/W) 

	

Some words of advice 
Nested ANOVAs are mathematically complicated, and you should only be trying to 
construct a nested model once you have a very clear idea what you are doing. Within-
group ANOVAs (also called a repeated measures ANOVA) work fine as long as the 
experimental design is perfectly balanced. As soon as your data moved away from 
balance (even a little bit), Within-group ANOVAs can develop substantial problems and 
it becomes far more preferable to control for groups using a linear mixed effects model 
with the group as a random effect in the model. All of the experimental designs that are 
shown in blue (bottom half) may be better approached through use of mixed effects 
models.	
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I still don't understand! Why are we 'testing assumptions'? None 
of this makes sense… can't we just do an ANOVA? 
Statistical tests, like ANOVAs or t-tests or chi squared tests, all carry assumptions about 
the data. A t-test for example assumes the data consists of two sets of normally 
distributed data. If you tried to feed non-normal data into a t-test, you might get a result, 
but the result would be unreliable. 
 
All we are doing is testing whether the data meets the test assumptions, and then (if it 
doesn't) we try to transform the data so that it does meet assumptions, or look for another 
more suitable test. 
 

Assumptions are confusing.  Non-parametric tests don't have 
assumptions. Why not just use them from the start? 
Most non-parametric tests work by ranking the data. This is a form of very drastic 
transformation, and it discards a lot of information from a model. A transformation, like 
a log transformation or a square root transformation, is an attempt at going half-way: 
we're trying to 'correct' the data, and we know we will lose some information, but 
hopefully most of the information in the distribution will remain. We're stuck between 
needing the data to meet the assumptions of a test, but being reluctant to transform the 
data really drastically because we know that could change the data to a point of losing 
too much information. 
 
Also, non-parametric tests inflate Type II error (the risk of accidentally accepting the null 
when we shouldn't). Because scientists are obsessed with significance, they sometimes 
do seem to avoid non-parametric tests for this reason. 
 

Testing assumptions for ANOVAs and other linear models is 
confusing. Can't you break it down a bit to make it simpler to 
follow? 
Alright. Have a look at the flow diagram on the next page. 
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Testing assumptions in ANOVAs (and other ANOVA-like linear models) is quite involved. 
Here is a flow chart to help you visualize the process. 
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At a more fine-grained level, we also have to check the interaction terms and think about 
whether or not we will require a post hoc test, such as a Tukey's test. 
 
 

	
 
 
We will leave this here for now, and examine what is meant by 'interactions' and 'post 
hoc' a little way down the track. 
 
For now, we can return to checking assumptions for an ANOVA. The assumptions are the 
same for ANOVAs, ANCOVAs and other ANOVA-like linear regression models. These all 
(effectively) work the same way under the hood, which means that the assumption 
testing is the same for all of these basic linear models. 	
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DIAGNOSTIC PLOTS 
You can use the plot command to look at diagnostic plots. The current advice is that it is 
better to use diagnostic plots to check assumptions in an ANOVA (or any regression-type 
linear model) rather than using assumption tests like Shaprio-Wilks or Bartlett tests. 
 
par(mfrow = c(2, 2)) 
plot(fullmodel.aov) 
 
Residuals vs Fitted (homogeneity of variance in residuals) 
The Residuals vs Fitted plot can be used to check homogeneity of residuals and linearity 
of a model. If the residuals are equal (homogenous) there should be no pattern or shape 
to the scatter of points. If there is a wedge (arrow-head or side-ways triangle) shape to 
the data points (thin at one end, thick at the other) the residuals of the model are not 
equal across the model. If it looks like a random cloud of scattered points you're ok. As 
long as the red line is (relatively) horizontal and straight, the model is probably linear. 
 
Normal QQ (normality of residuals) 
The Normal QQ plot can be used to check the normality of residuals. If the residuals are 
normal the observations (circles) should fall on the line of normality 
 
Scale-Location  
This also can be used to test for homogeneity of residuals and linearity of a model. It is 
read in exactly the same way as the Residuals vs Fitted plot. If the plots disagree, the 
Residuals vs Fitted is considered (slightly) better for linearity, whereas the Scale-
Location is considered (slightly) better for examining equal variances across the range 
of a predictor. 
 
Residuals vs Leverage 
This is a more easily interpreted check for outliers. If observations are scattered so that 
they are sitting beyond the 0.5 or 1 Cook's distance lines you have a potential problem 
with outliers. 
 
Checking tests visually: Most statisticians now seem to recommend you should check the 
assumptions visually rather than rely on significance tests. Significance tests for assumptions 
can provide a nice yes/no answer, but assumption testing is a bit more nuanced than this, and 
sometimes you need to make a judgment call whether the data looks basically ok. 
 
The following pages have some examples of diagnostic plots that have some problems 
in them.  
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 Untransformed Transformed 

 
 
These plots have a couple of problems. For the untransformed data, you can see (on the 
left) that the residuals vs fitted plot has a clear 'wedge' shape (I've drawn a line around 
it in orange unless it is not clear) and the QQ plot is showing a fairly drastic tendency 
away from the line of normality (indicated in orage). The residuals vs leverage plot 
appears to be fine. 
 
I've transformed the data and made it, if anything, worse (i.e. transformations don't 
always improve data). There is still a wedge shape in the Residuals vs Fitted and now the 
Scale-Location is developing a wedge as well. The QQ plot is maybe a little better, but a 
lot of points are still clearly departing from the line of normality. And now we have a 
clear outlier too (Residuals vs Leverage). Point 131 is on the other side of the 0.5 Cook's 
D line, which indicates it is having too heavy an effect on the model as a whole. 
 
Let's try a more aggressive transformation and see if we can improve the fit of the data. 
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These look better. I achieved this by applying a rank normal transformation to the data 
and using the rank normal transformed data as a response variable. The rank normal 
transformation is a very drastic transformation that forces the data into a normal 
distribution. It won't work if you have too many ties or if there are a lot of zeroes in the 
data, but otherwise will tend to work with most data. In essence, using a rank normal 
transformation is like forcing your ANOVA to perform like a non-parametric test. It is far 
from ideal, but you might be stuck having to take an approach like this. 
 
I've given the code below for a rank normal transformation, but here it is as well in 
case you want to try it straight off the bat: 
 
install.packages("GenABEL") 
library(GenABEL) 
 
yourdata$RANK.NORMAL <- rntransform(yourdata$variable)  
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One-Way ANOVA 
 
Import the adult house swallows dataset (if you haven't already): 
swallows <- read.table('swallows-adults.csv', 
header=T,sep=',') 
 
Check the data: 
head(swallows) 
str(swallows) 
 
Run the following code on the adult swallows data: 
 
swallows.aov <- aov(MASS~BROODPATCH,data=swallows) 
summary(swallows.aov) 
 

 
 
Check the P-values of your ANOVA result above with the P-values of the equal and 
unequal variance t-tests we just did on the same data. Does the P-values match? 
 
t.test(MASS~BROODPATCH,data=swallows, var.equal=TRUE) 
 

 
 

RESULT 
 
          Df Sum Sq Mean Sq F value   Pr(>F)     
BROODPATCH    1  13.15  13.147   21.68 9.13e-06 *** 
Residuals   109  66.10   0.606                      
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1	
	

RESULT 
 
 Two Sample t-test 
 
data:  MASS by BROODPATCH 
t = -4.6563, df = 109, p-value = 9.134e-06 
alternative hypothesis: true difference in means is not equal 
to 0 
95 percent confidence interval: 
 -0.9822838 -0.3957253 
sample estimates: 
mean in group 1 mean in group 2  
       13.70755        14.39655	
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One-Way ANCOVA with one covariate 
 
Run the following code on the adult swallows data: 
 
 
swallows.aov <- aov(MASS~WingL*BROODPATCH,data=swallows) 
summary(swallows.aov)	
	
	

	
	

Two-Way ANOVA 
 
Run the following code on the adult swallows data: 
 
 
swallows.aov <- aov(MASS~MONTH*BROODPATCH,data=swallows) 
summary(swallows.aov)	
	
	

	
	
	 	

RESULT 
 
              Df Sum Sq Mean Sq F value   Pr(>F)     
WingL              1   4.38   4.375   7.621  0.00679 **  
BROODPATCH         1  12.63  12.626  21.991 8.13e-06 *** 
WingL:BROODPATCH   1   0.81   0.809   1.409  0.23793     
Residuals        107  61.43   0.574	
	

RESULT 
 
              Df Sum Sq Mean Sq F value   Pr(>F)     
MONTH              4   4.39   1.099   1.980    0.103     
BROODPATCH         1  16.94  16.942  30.538 2.52e-07 *** 
MONTH:BROODPATCH   3   1.32   0.440   0.793    0.501     
Residuals        102  56.59   0.555  	
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Effect sizes for ANOVAS 
It is generally a good idea to report an effect size as well as the results of any statistical 
test. For ANOVAs the eta squared (η2) is an effect size that is frequently reported in 
psychology and medical studies, but is perhaps underused in biological sciences. An is 
equivalent to an R2 (i.e. it is a percentage of variance explained, but for each predictor). 
The eta squared function in the lsr library provides both the standard η2	(which	you	
would	report)	and	the	partial	η2	(which	you	wouldn't	typically	report).	The	partial	η2	is	the	
variance	explained	as	if	none	of	the	other	predictors	were	in	the	model,	which	isn't	highly	
interpretable	 if	you	are	actually	 interested	in	hypothesis	testing	based	on	the	ANOVA	as	a	
whole.	 
 
install.packages("lsr") 
# Download library from the internet. 
# Only needed if you haven't already installed the package 
 
library(lsr) 
 
swallows.aov <- aov(MASS~WingL*BROODPATCH,data=swallows) 
etaSquared(swallows.aov)	
	
	

	
	
swallows.aov <- aov(MASS~MONTH*BROODPATCH,data=swallows) 
etaSquared(swallows.aov)	
	
	

	
 
The η2 is interpreted in the same was an R2 is interpreted. A value of 0 = zero variance 
explained, whereas 1 = 100% of variance explained.  

RESULT 
 
             eta.sq        eta.sq.part 
WingL            0.04864008    0.05903723 
BROODPATCH       0.15933154    0.17048468 
WingL:BROODPATCH 0.01020536    0.01299295	
	

RESULT 
 
             eta.sq      eta.sq.part 
MONTH            0.1033432    0.12642313 
BROODPATCH       0.2137978    0.23041207 
MONTH:BROODPATCH 0.0166550    0.02279164	
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Changing the order of predictors 
Now run these two sets of code and look at the P-values comparing them to the tests 
you just did on the previous page. Have the P-values changed? Have any of the results 
changed in terms of their significances? 
 
swallows.aov <- aov(MASS~BROODPATCH*WingL,data=swallows) 
summary(swallows.aov)	
	

	
	
swallows.aov <- aov(MASS~BROODPATCH*MONTH,data=swallows) 
summary(swallows.aov)	
	

	
 
What you may have noticed is that the P-values are changing depending on the order of 
the variables. This often causes students to have a mini-crisis of confidence when they 
first notice this. So, what is going on here? 
  

RESULT 
 
              Df Sum Sq Mean Sq F value  Pr(>F)     
BROODPATCH         1  13.15  13.147  22.898 5.5e-06 *** 
WingL              1   3.85   3.854   6.713  0.0109 *   
BROODPATCH:WingL   1   0.81   0.809   1.409  0.2379     
Residuals        107  61.43   0.574	

RESULT 
 
              Df Sum Sq Mean Sq F value   Pr(>F)     
BROODPATCH         1  13.15  13.147  23.698 4.12e-06 *** 
MONTH              4   8.19   2.047   3.690  0.00756 **  
BROODPATCH:MONTH   3   1.32   0.440   0.793  0.50054     
Residuals        102  56.59   0.555   	
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Predictor order is important 
When you changed the order of the predictor variables, the P-values may change. You 
might find when you do this that some variables will fall in and out of significance. What 
is going on? 
 
There are three ways to partition the variance in y among the explanatory effects on the 
right side of the equation. The equation… 
 

y ~ x1 + x2 + A * B 
 

…is equivalent to… 
 

y ~ x1 + x2 + A + B + A:B 
 
If the design is balanced then all three types of variance partitioning (called the Type I, 
II and III sums of squares) will generate the same result and the order of predictors won't 
matter (a good reason to keep your designs balanced). But if the design is unbalanced 
the different Types of sums of squares partition variation explained in different ways. 
 
Type I (sequential) 
Explanatory effects are adjusted for those that appear earlier in the formula. In the 
example above, x1 is unadjusted, x2 is adjusted for x1, A is adjusted for x1 and x2, B is 
adjusted for x1 and x2 and A, and the interaction term A:B is adjusted for all other 
terms.  
 
Type II (hierarchical) 
Explanatory effects are adjusted for those at the same level. In Type II, x1, x2, A and B 
are all adjusted for each other but not for the interaction term. The interaction term A:B 
is adjusted for all the main effects (x1, x2, A and B). If there were two interaction terms, 
perhaps x1:x2, then A:B and x1:x2 would also be adjusted for each other. 
 
Type III (marginal) 
Each explanatory effect is adjusted for every other effect in the model. This is the least 
powerful of the sums of squares approaches, and is arguably the most conservative, but 
it causes problems for post-hoc analyses like Tukey's tests which we will look at shortly. 
 
R by default runs Type I sums of squares which are the best for post-hoc analyses. You 
can run Type II and Type III sums of squares tests using the Anova function in package 
car if you like, but it is often better to arrange the explanatory variables in an order that 
makes experimental sense. If you want to look at this function type: 
 
library(car) 
?Anova  
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In the example where we are looking at the effects of Month and Broodpatch on adult 
house swallow Mass it makes sense to write the model out as Month, then Broodpatch. 
This is because primarily we are interested in the effect of Broodpatch, but we have 
(presumably) included Month here because we know that swallows will gain and lose 
Mass over a breeding season and we want to control for this in the statistical model. In 
essence, by placing Broodpatch after Month we are asking: does Broodpatch (sex of 
swallows) associate with differences in Mass after we take into account the variation in 
Mass already explained by Month. 
 
When working with Type I sums of squares models in R it is important to know what 
question you want to ask before writing out formulas. Some fundamental advice: 
 

(1) Place a predictor that you wish to control for (especially if the 
predictor is not a part of your hypothesis) early in the sequence. 
If you want to control for the effect of a predictor on another predictor, the controlled 
predictor must come first. 
 

(2) Place predictor(s) that are key to your hypothesis late in the 
sequence. 
This is placing your predictors that relate to your key hypothesis in a position where all 
the other variables have a go at explaining the variance first. This biases against finding 
significance in your predictor of interest, which is the most rigorous approach to take. 
 
The key thing here is that placing your variables of interest early in the sequence is 
arguably a form of P-hacking because you are making a decision to favour them in terms 
of obtaining a significant P-value. 
 
Also, although it may seem that adding additional variables will always make it harder 
to see significance in your variables of interest, this isn't necessarily true if you have been 
intelligent about your covariates. Covariates that are early in the sequence can also act 
to 'clear away' some of the confusion in the variance, leaving behind residuals that your 
predictor of interest is better able to explain. This is fundamentally what happens with 
the stress and city living example above, where including the covariate 'how long have 
you lived where you live', resolves some of the variation and allows for the variable of 
interest (city vs country living) to explain the remaining variation in a meaningful way. 
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Changing the interaction terms 
Now run these three sets of code and look at the P-values comparing them to each other: 
 
swallows.aov <- aov(MASS~MONTH*BROODPATCH,data=swallows) 
summary(swallows.aov)	
	

	
	
swallows.aov <- 
aov(MASS~MONTH+BROODPATCH+MONTH:BROODPATCH,data=swallows) 
summary(swallows.aov) 
 

 
 
swallows.aov <- aov(MASS~MONTH+BROODPATCH,data=swallows) 
summary(swallows.aov)	
 

 
 
Are there any changes in P-values (however small)? Did you notice that the interaction 
term MONTH:BROODPATCH has disappeared from the last model? What was different 
about the code in the third model? 

  

RESULT 
 
              Df Sum Sq Mean Sq F value   Pr(>F)     
MONTH              4   4.39   1.099   1.980    0.103     
BROODPATCH         1  16.94  16.942  30.538 2.52e-07 *** 
MONTH:BROODPATCH   3   1.32   0.440   0.793    0.501     
Residuals        102  56.59   0.555               	
	

RESULT 
 
              Df Sum Sq Mean Sq F value   Pr(>F)     
MONTH              4   4.39   1.099   1.980    0.103     
BROODPATCH         1  16.94  16.942  30.538 2.52e-07 *** 
MONTH:BROODPATCH   3   1.32   0.440   0.793    0.501     
Residuals        102  56.59   0.555	
	

RESULT 
 
              Df Sum Sq Mean Sq F value   Pr(>F)     
MONTH         4   4.39   1.099   1.992    0.101     
BROODPATCH    1  16.94  16.942  30.720 2.23e-07 *** 
Residuals   105  57.91   0.551	
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Interactions are important 
An interaction term is an additional factor or covariate in a model that is included to look 
for complex relationships between main effects (the ordinary non-interactive factors and 
covariates like A and B and x1 and x2). 
 
Because an interaction term changes the model, even in a Type I model, the P-values of 
the other terms will be (usually only slightly) changed. 
 
What does a significant interaction mean? 
There is a complex relationship and you can't interpret the main effects. Consider the 
following situation: 
 
MASS ~ MONTH    P < 0.005 
  BROODPATCH   P < 0.005 
  MONTH:BROODPATCH  P < 0.005 
 
The significant interaction term means that you cannot interpret Month or 
Broodpatch. The interaction term could mean any of the following: 
 

• Females are heavier than males, but only in August. 
• Males are heavier than females but only in April. 
• Females are heavier than males, but only in April and August 

… and so on and so on 
 
How to interpret a significant interaction term 
If the interactions are between factors, then splitting the factors and analysing the levels 
separately is an acceptable approach. In the above example we might split up all the 
data by Month and then analyse Broodpatch separately for each Month. 
 
Also, you can apply a post-hoc Tukey's test to an ANOVA model with factorial interactions. 
However, this generates a (very large) series of comparisons that may not be biologically 
meaningful and the power of your analysis will be substantially reduced. Only take this 
step if it makes some biological sense to compare all possible interactions. 
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What does a non-significant interaction term mean? 
When an interaction term is non-significant it is reducing the explanatory power of the 
model. You should remove it, and re-run the model using + instead of * to separate the 
factors or covariates. If A:B is non-significant change the formulas from… 
 

y ~ A * B 
 

to 
 

y ~ A + B 
 

…and re-run the model. 
 
However, keep in mind that: 
 
1) You would keep a non-significant interaction term if the interaction term itself is 
testing the hypothesis of your study 
 
2) For very large datasets removing non-significant interaction terms won't make much 
different to the P value 
 
3) Some people prefer to leave non-significant interaction terms in a model, because 
removing them can look a bit like chasing after significance for main effects 
 
4) Leaving a non-significant interaction term in a model is not a terrible statistical 
crime. Not checking for interaction terms in the first place may render your main effects 
meaningless without you even realising. 
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Interactions in linear models 
Interaction terms can be one of the most difficult concepts to understand in statistics. A 
significant interaction happens when the effect of one predictor depends on the effect 
of another predictor. This is best explained visually. 
 
swallows.aov <- aov(MASS~MONTH.1*BROODPATCH,data=swallows) 
 
library(interactions) 
interact_plot(swallows.aov, pred = "MONTH.1", modx = 
"BROODPATCH", interval = TRUE, int.width = 0.8) 
 

 
I've used month as a numeric value (8 = August, 12 = December) to make it a bit easier 
to read the figure, but what you can see is that male (broodpatch = 1) and female 
(broodpatch = 2) have quite different profiles to their mass from August to December. 
Males seem to be losing mass, while females seem to be gaining mass. 
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The two sexes are no different in mass and there is no difference between 

sites A and B 
 

	
 
 

The two sexes are no different in mass but there is a difference between 
sites A and B 

 

	
 
 
The two sexes are different in mass, and there is a difference between sites 

A and B, but males and females are responding differently 
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Note how the following examples have similar statistical results but the 

relationships are markedly different... 
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Interaction Terms: Step-by-step 
 
When you run any sort of linear model: 

(1) Start by including all interaction terms 
(2) Remove the interaction term that has the highest P value 
(3) Run the model again… check interactions 
(4) Remove another interaction term with a high P value 
(5) Keep removing interaction terms until all you are left with are main effects 

and significant interactions 
 
Why do we remove non-significant interactions from the model? 

• Non-significant interaction terms interfere with the over-all predictive power of 
the model. 

• By including them you are in effect telling the model to take into account an 
interaction and consider it important when it may not be 

• When you remove non-significant terms, you will find the other P-values will 
change (slightly) 

• But actually, it's usually no terrible problem leaving them in, and some 
researchers prefer to leave interactions in a model to show that they remembered 
to check them. Also, removing interaction terms can look like chasing significance 
(as P values will tend to decrease), but if significance depends on removing an 
interaction term, you need to seriously think about what that might mean in terms 
of overall effect. Relevant effect sizes will be an important next step. 

 
Do we ever retain non-significant interaction terms in a linear model? 

• Non-significant interaction terms are usually retained if they were part of your 
hypothesis. 

o For example, if your hypothesis specifically states Male guppy preference 
for larger females depends on the temperature of the water then the 
interaction term FEMALE.SIZE:WATER.TEMPERATURE is part of your 
experimental design and you would retain it in the model even if it is non-
significant. 

• Sometimes non-significant interaction terms are retained when higher order 
terms including the same variables are significant. So, if you find that the two-
way interaction term AGE:SEX is not significant but the three-way interaction 
term AGE:SEX:HEALTH is significant then there is an argument for retaining the 
non-significant lower order interactions. 

• When sample size is large (n = thousands of samples) the retention or removal of 
interaction terms makes less difference to the main effects and some researchers 
chose to leave the non-significant terms in the model. This last point is largely 
one of personal preference.  
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Exploring Interaction Terms in Linear Models  
 
Johnson-Neyman Procedure 
The Johnson-Neyman Procedure is a method for identifying the range over which two 
groups differ for a given response.  
 

ASSUMPTIONS OF JOHNSON-NEYMAN 
(1) Your model has already met the assumptions of a linear model 
(2) There is a significant interaction term 
(3) The response is continuous 
(4) The interaction term is two-way or three-way (only 2 or 3 terms) 
(5) The predictors need to be either numeric or sensibly coded as 

numeric dummy variables (i.e. male = 0, female = 1). 
 
In some ways, the Johnson-Neyman procedure is quite limited in scope (there are quite 
a few limitations, but when it is applicable, it can be hugely useful for resolving and 
unravelling exactly how two terms are interacting with respect to a response variable, 
 
Let's use our swallows dataset again. 
 
swallows.aov <- aov(TailL~MONTH.1*BROODPATCH,data=swallows) 
summary(swallows.aov) 
 

 
 
So we have a significant interaction of MONTH:BROODPATCH for Tail Length (P = 
0.0444). This suggests that the length of the tail is responding to month differently for 
the sexes. We'll make use of the visual and statistical tools in the interactions package.  
Let's start with an interaction plot. 
 
  

RESULT 
                    Df Sum Sq Mean Sq F value  Pr(>F)    
MONTH.1              1      0     0.0   0.000 0.98321    
BROODPATCH           1    334   334.5   9.216 0.00301 ** 
MONTH.1:BROODPATCH   1    150   150.1   4.137 0.04444 *  
Residuals          107   3884    36.3                   	
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library(interactions) 
interact_plot(swallows.aov, pred = "MONTH.1", modx = 
"BROODPATCH", interval = TRUE, int.width = 0.8) 
 

 
 
That certainly looks like an interaction. It appears that females (Broodpatch = 2) have 
declining tail length from August to December, whereas males (Broodpatch = 1) have an 
increasing tail length. We can use the Johnson-Neyman Procedure to work out exactly 
for which months the difference is significant. 
 
However, the Johnson-Neyman procedure won't work with an aov object. We need to 
create an lm object instead. 
 
swallows.lm <- lm(TailL~MONTH.1*BROODPATCH,data=swallows) 
summary(swallows.lm) 
 
Note also, that if you have difficulty getting this procedure to work, you may need to use 
as.numeric to ensure that the predictors are numbers. You'd need to do this before 
building the model. 
 
swallows$MONTH.1 <- as.numeric(swallows$MONTH.1) 
swallows$BROODPATCH <- as.numeric(swallows$BROODPATCH) 
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The	Johnson-Neyman	functions	are	also	in	the	interactions	library,	so	you'll	want	to	be	sure	
it	is	loaded.	
	
library(interactions) 
 
sim_slopes(swallows.lm, pred = "BROODPATCH", modx = "MONTH.1", 
johnson_neyman = TRUE) 
	
In	this	example,	we	are	asking	over	what	range	of	months	is	the	slope	of	broodpatch	(sex)	
different.	Note	that	the	predictor	and	moderator	have	been	swapped	here.	You	can	try	it	
the	other	way	around,	and	see	what	result	you	obtain.		
	

	
	
The	interpretation	would	be	that	the	two	sexes	have	different	slopes	for	the	response	of	tail	
length	to	month	before	-64.92	(meaningless,	there	is	no	'month'	before	zero),	and	after	9.66	
(i.e.	about	half-way	through	September,	the	ninth	month).	We	can	also	visualise	this	
graphically:	
	
	 	

RESULT 
JOHNSON-NEYMAN INTERVAL  
 
When MONTH.1 is OUTSIDE the interval [-64.92, 9.66], the slope 
of BROODPATCH is p < .05. 
 
Note: The range of observed values of MONTH.1 is [8.00, 12.00] 
 
SIMPLE SLOPES ANALYSIS  
 
Slope of BROODPATCH when MONTH.1 = 11.39 (+ 1 SD):  
  Est. S.E. t val.    p 
 -5.99 1.66  -3.60 0.00 
 
Slope of BROODPATCH when MONTH.1 = 10.09 (Mean):  
  Est. S.E. t val.    p 
 -3.45 1.21  -2.85 0.01 
 
Slope of BROODPATCH when MONTH.1 =  8.79 (- 1 SD):  
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johnson_neyman(swallows.lm, pred = "BROODPATCH", modx = 
"MONTH.1", alpha = 0.05) 
	

	
 
The thick black line shows you the actual range of the data. The red indicates the 
increments (here, months) over which the difference is not significant. The blue indicates 
the region in which there is significance. As with the result we had above, male and 
female adult swallows appear to have significantly different slopes of the relationship 
between month and tail length after mid-September, through to December. 
 
Controlling for False Discovery Rate 
The Johnson-Neyman Procedure in the interactions package allows you to control for 
false discovery rate. Try this and see whether the results differ to that above. 
 
sim_slopes(swallows.lm, pred = "BROODPATCH", modx = "MONTH.1", 
johnson_neyman = TRUE", control.fdr = TRUE) 
 
Note that the result is now for the range inside two numbers, rather than outside a set 
of two numbers. 
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The interactions package does have some options for including a second moderator, 
although you will also need the library cowplot installed to make use of this. You can 
try this using the agilis_morphometrics.csv dataset. 
 
agilis <- read.table('agilis-morphometrics.csv', 
header=T,sep=',') 
 
install.packages("cowplot") 
library(cowplot) 
 
agilis.lm <- lm(MASS~SEX * FRAGMENTATION * MONTH , data= 
agilis) 
summary(agilis.lm) 
 
sim_slopes(agilis.lm, pred = "SEX", modx = "MONTH", mod2 = 
"FRAGMENTATION",jnplot = TRUE, control.fdr = TRUE) 
 
  

RESULT 
JOHNSON-NEYMAN INTERVAL  
 
When MONTH.1 is INSIDE the interval [9.78, 29.25], the slope 
of BROODPATCH is p < .05. 
 
Note: The range of observed values of MONTH.1 is [8.00, 12.00] 
 
Interval calculated using false discovery rate adjusted t = 
2.23  
 
SIMPLE SLOPES ANALYSIS  
 
Slope of BROODPATCH when MONTH.1 = 11.39 (+ 1 SD):  
  Est. S.E. t val.    p 
 -5.99 1.66  -3.60 0.00 
 
Slope of BROODPATCH when MONTH.1 = 10.09 (Mean):  
  Est. S.E. t val.    p 
 -3.45 1.21  -2.85 0.01 
 
Slope of BROODPATCH when MONTH.1 =  8.79 (- 1 SD):  
  Est. S.E. t val.    p 
 -0.92 1.81  -0.51 0.61 
Slope of BROODPATCH when MONTH.1 =  8.79 (- 1 SD):  
  Est. S.E. t val.    p 
 -0.92 1.81  -0.51 0.61	
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In effect, the model has been split into fragmented (1)and continuous (0) populations, 
and then a difference for slope of mass by sex has been checked for each of the two 
populations seperately. The plot generated is on the next page, and you can see that the 
fragmented and continuous populations are graphed separately too. 

RESULT 
██████████ While FRAGMENTATION (2nd moderator) = 0.00 (0) ██████████  
 
JOHNSON-NEYMAN INTERVAL  
 
When MONTH is INSIDE the interval [0.66, 14.68], the slope of SEX is p < 
.05. 
 
Note: The range of observed values of MONTH is [3.00, 8.00] 
 
Interval calculated using false discovery rate adjusted t = 1.97  
 
SIMPLE SLOPES ANALYSIS  
 
Slope of SEX when MONTH = 4.32 (- 1 SD):  
  Est. S.E. t val.    p 
 -5.87 0.94  -6.24 0.00 
 
Slope of SEX when MONTH = 5.70 (Mean):  
  Est. S.E. t val.    p 
 -6.22 0.66  -9.36 0.00 
 
Slope of SEX when MONTH = 7.09 (+ 1 SD):  
  Est. S.E. t val.    p 
 -6.57 0.93  -7.07 0.00 
 
██████████ While FRAGMENTATION (2nd moderator) = 1.00 (1) ██████████ 
 
JOHNSON-NEYMAN INTERVAL  
 
When MONTH is OUTSIDE the interval [-10.11, 2.34], the slope of SEX is p 
< .05. 
 
Note: The range of observed values of MONTH is [3.00, 8.00] 
 
Interval calculated using false discovery rate adjusted t = 1.97  
 
SIMPLE SLOPES ANALYSIS  
 
Slope of SEX when MONTH = 4.32 (- 1 SD):  
  Est. S.E. t val.    p 
 -6.66 0.97  -6.87 0.00 
 
Slope of SEX when MONTH = 5.70 (Mean):  
  Est. S.E. t val.    p 
 -8.80 0.68 -12.93 0.00 
 
Slope of SEX when MONTH = 7.09 (+ 1 SD):  
   Est. S.E. t val.    p 
 -10.95 0.98 -11.19 0.00	
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There is a small region of non-significant difference in slopes (red) for fragmented 
populations, but if you look at the thick black line, you can see that this is outside our 
actual sampled range (March-August). We wouldn't want to infer anything about months 
outside of the sampling range anyway, so that's fine. Plotting the data rather than the 
slopes would be helpful for interpretation: 
 
interact_plot(agilis.lm, pred = "MONTH", modx = "SEX", , mod2 
= "FRAGMENTATION", interval = TRUE, int.width = 0.8) 

 
Fragmentation (0 = continuous forest, 1 = fragmented) Sex (0 = male, 1 = female)  
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The interactions package also allows you to examine a significant interaction between 
two categorical predictors (factors) using a categorical interaction plot. 
 
We will use the agilis_morphometrics.csv dataset again. Note that I am using 'aov' instead 
of 'lm' because 'aov' is considered preferable when your predictors of interest are 
categorical. 
 
agilis <- read.table('agilis-morphometrics.csv', 
header=T,sep=',') 
 
agilis.aov <- aov(MASS~MF * HABITAT, data= agilis) 
summary(agilis.aov) 
 
library(interactions) 
cat_plot(agilis.aov, pred = "MF", modx = "HABITAT", data = 
agilis) 

 

 
 
 
Our interpretation would be that there is no difference in mass for female agile 
antechinus in the two environments (fragmented and continuous), but male agile 
antechinus are heavier in the fragmented habitat. We can draw this as a statistically valid 
conclusion because the bars indicate 95% confidence intervals (i.e. not standard errors), 
so if bars do not overlap, then the means are different at P < 0.05. However, do note that 
no 'pairwise' correction has been applied, and it might be sensible to try applying a 
Tukey's test to the interaction term as well. Which brings us to the next topic.  
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Post-hoc multiple comparisons 
 
A post-hoc test is applied after the 
initial hypothesis test has been 
conducted. If the initial hypothesis 
test shows a significant effect of a 
factor, then post-hoc tests can help 
disentangle exactly what the effect 
may be. One important feature of 
post-hoc tests is that they adjust the 
P-value to take into account the 
number of comparisons being made. 
Because each comparison (using 
classically statistical methods) runs a 
0.05% chance of returning a false 
positive, testing differences in groups 
by applying endless sequences of t-
tests (for example) runs an 
increasingly high risk of returning a 
false significant result. The XKCD 
comic illustrates this quite clearly. 
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Tukey's Test 
If you only have two levels in a factor (i.e. as when you are doing a t-test) there is no 
good reason to apply a post-hoc test. If there is a significant difference with just two 
levels you simply need to graph the data and check which of the two means is higher 
than the other. You already know the difference is significant because that was what your 
initial hypothesis test informed you. 
 
Where there are three or more levels of a significant factor, then you need to undertake 
a post-hoc test to determine which groups have different sample means and which have 
the same sample means. 
 

ASSUMPTIONS	OF	TUKEY	TEST	
(1)	Equal	variances		
(2)	Observations	must	be	independent	(collected	randomly)	
(3)	You	are	testing	the	effect(s)	of	a	factor	on	a	response	variable	
(4)	The	factor	has	already	been	shown	to	be	significant	
(5)	The	factor	has	3	or	more	levels	

	
	
Import the agilis morphometrics dataset (if you haven't already): 
agilis <- read.table('agilis-morphometrics.csv', 
header=T,sep=',') 
 
Check the data: 
head(agilis) 
str(agilis) 
 
Run the following: 
1) Turn month into a factor (it is currently a number) 
agilis$MONTH <- as.factor(agilis$MONTH) 
 
2) Create an ANOVA model 
agilis.aov <- aov(RBC~MONTH,data=agilis) 
 
3) Check the diagnostic plots. Do they look okay? 
par(mfrow = c(2,2)) # set plotting window to 2x2 array 
plot(agilis.aov) 
 
4) Look at the results of the ANOVA. 
summary(agilis.aov) 
etaSquared(agilis.aov) # in library 'lsr' 
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This result has informed us that there is some sort of difference by month for agile 
antechinus red blood cell counts, but we don't know which months are different to which 
other months. Because seasonal effects are often (although not always) non-linear 
because of the cyclical nature of the year, it is often better to view months as factors 
rather than numbers (at least at the more basic level of ANOVAs… more sophisticated 
tests for cyclical data do exist but we're not looking at them at this point). Let's have a 
look at the boxplots and a post-hoc comparison. 
 
 
 
  

RESULT 
 
> summary(agilis.aov) 
             Df    Sum Sq   Mean Sq F value   Pr(>F)     
MONTH         5 8.002e+25 1.600e+25   5.306 0.000132 *** 
Residuals   203 6.122e+26 3.016e+24                      
 
> etaSquared(agilis.aov) 
         eta.sq    eta.sq.part 
MONTH 0.1155909      0.1155909 
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par(mfrow = c(1,1)) # set plotting window to 1x1 array 
boxplot(RBC~MONTH,data=agilis,col=c("forestgreen"), ylab = "Agile 
antechinus RBC", xlab = "Months: from March to August") 
 
 

 
 
TukeyHSD(agilis.aov) 
 

  

RESULT 
 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = RBC ~ MONTH, data = agilis) 
 
$MONTH 
             diff           lwr           upr     p adj 
4-3  6.060440e+10 -1.595730e+12 1716938832527 0.9999982 
5-3  2.741604e+11 -1.216218e+12 1764538487050 0.9949416 
6-3 -5.497619e+11 -2.091725e+12  992201539901 0.9088421 
7-3 -8.398571e+11 -2.350667e+12  670952313723 0.5999092 
8-3 -1.736857e+12 -3.477979e+12    4264726072 0.0509691 
5-4  2.135560e+11 -9.688964e+11 1396008418516 0.9953595 
6-4 -6.103663e+11 -1.857210e+12  636476967489 0.7219131 
7-4 -9.004615e+11 -2.108564e+12  307641140953 0.2688956 
8-4 -1.797462e+12 -3.283554e+12 -311368596421 0.0079700 
6-5 -8.239223e+11 -1.839994e+12  192149151876 0.1857561 
7-5 -1.114018e+12 -2.082158e+12 -145877493844 0.0138576 
8-5 -2.011018e+12 -3.309576e+12 -712458609957 0.0001986 
7-6 -2.900952e+11 -1.335906e+12  755715252267 0.9675809 
8-6 -1.187095e+12 -2.544549e+12  170358160783 0.1242693 
8-7 -8.970000e+11 -2.218958e+12  424958274507 0.3736712	
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How do we interpret the output of the Tukey's test? The test is running all possible 
'pairwise' comparisons for the mean of RBC by month, and adjusting to control for the 
'familywise' error rate. The problem with running many tests is that the risk of a Type I 
error (rejecting the null when we shouldn't due to a chance event) increases. The Tukey's 
test penalises the P values by (in effect) multiplying P values by the number of 
comparisons, topping out at P > 0.999. Let's look at one line and interpret it: 
 
             diff           lwr           upr     p adj 
4-3  6.060440e+10 -1.595730e+12 1716938832527 0.9999982 
 
4-3 The mean of April minus the mean of March 
 
diff Is a difference of… 
6.060440e+10 6x1010 cells per L 
 
The 95% lower confidence limit for this difference is -1.595730e+12 RBC/L whereas 
the 95% upper confidence limit is 1716938832527 RBC/L. Note that the confidence 
interval crosses zero. This means that within a 95% level of confidence, the difference 
between the two means could be zero. 
 
The adjusted P value for this difference is 0.9999982, which suggests the difference is 
not significant (i.e. we have a 95% level of confidence that the difference in means may 
be zero: a P value is a CI 'flipped around' the other way). 
 

How to report a Tukey's Test 
Typically, Tukey's contrasts are reported in a table. The Difference and the Adjusted P-
value should always be reported. The confidence intervals should also be reported for 
preference, but space allowances in journals sometimes restrict this. You can also use 
equal signs like this (March = April = May = June: P > 0.05 for all contrasts), or does not 
equal signs like this (August ≠ April: P < 0.05), but you have to be very careful as you 
write out the equals and not-equals, as this can be confusing, and easy to mix up. Tukey's 
tests are also reported using alphabet soup on graphs, and we'll look at an example of 
this now. 
 
Incidentally, you can plot a Tukey's test, but the plot only gives you the confidence 
intervals, which are usually not reported in graphical form for a Tukey's test… 
 
agilis.tukey <- TukeyHSD(agilis.aov) 
plot(agilis.tukey) 
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The following boxplot is a visual representation of a two-way ANOVA involving sex (MF) 
and fragmentation of habitat (HABITAT). 
 
boxplot(MASS~HABITAT*MF,data=agilis,col=c("forestgreen","ivory")) 
 

 
	
boxplot(MASS~HABITAT*MF,data=agilis	
	
Run the following: 
1) Make sure your factors are definitely factors: 
agilis$HABITAT <- as.factor(agilis$HABITAT) 
agilis$MF <- as.factor(agilis$MF) 
 
2) Create an ANOVA model 
agilis.aov <- aov(MASS~HABITAT*MF,data=agilis) 
 
3) Check the diagnostic plots. Do they look okay? 
par(mfrow = c(2,2)) # set plotting window to 2x2 array 
plot(agilis.aov) 
 
4) Look at the results of the ANOVA. Check the interactions. Is the interaction term 
HABITAT:MF significant? 
summary(agilis.aov) 
etaSquared(agilis.aov) # in library 'lsr' 
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RESULT 
 
> summary(agilis.aov) 
             Df Sum Sq Mean Sq F value Pr(>F)     
HABITAT       1   63.6    63.6   4.935 0.0274 *   
MF            1 2937.3  2937.3 227.863 <2e-16 *** 
HABITAT:MF    1   86.6    86.6   6.722 0.0102 *   
Residuals   206 2655.5    12.9                    
 
 
> etaSquared(agilis.aov) # in library 'lsr' 
            eta.sq       eta.sq.part 
HABITAT     0.01545856   0.03235094 
MF          0.51145392   0.52519565 
HABITAT:MF  0.01508764   0.03159923	
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Because the interaction term was significant, we shouldn't remove it from the model. As 
long as both terms are factors (remembering that Tukey's tests won't work for covariate 
predictors as there are no levels to contrast), we will get all contrasts including for the 
interaction levels: 
 
TukeyHSD(agilis.aov) 
 

 
 
So all contrasts are significant, except for female fragmented and female continuous 
forest populations. Using equal signs this would look like so: (FF = CF (P > 0.05) & CM ≠ 
FM ≠ FF (P < 0.05) & CM ≠ FM ≠ CF (P < 0.05)). If we were to allocate 'alphabet soup' to 
these contrasts we would need to add a letter to be shared by FF and CF (because they 
are not different), and add letters to distinguish all other groups. Something like this 
would do: FFa, CFa,, FMb, CMc. Using this notation method any groups that share a letter 
are not significantly different. 
  

RESULT 
 
  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = MASS ~ HABITAT * MF, data = agilis) 
 
$HABITAT 
              diff       lwr      upr    p adj 
FRAG-CONT 1.101247 0.1239175 2.078576 0.027404 
 
$MF 
        diff      lwr      upr p adj 
M-F 7.493854 6.514746 8.472963     0 
 
$`HABITAT:MF` 
                     diff        lwr       upr     p adj 
FRAG:F-CONT:F -0.07108844 -1.9498588  1.807682 0.9996619 
CONT:M-CONT:F  6.24304931  4.4456499  8.040449 0.0000000 
FRAG:M-CONT:F  8.74881273  6.9058317 10.591794 0.0000000 
CONT:M-FRAG:F  6.31413775  4.5167384  8.111537 0.0000000 
FRAG:M-FRAG:F  8.81990117  6.9769201 10.662882 0.0000000 
FRAG:M-CONT:M  2.50576342  0.7458074  4.265719 0.0016372	
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Alphabet Soup on a Boxplot 
Let's use the boxplot we created above. 
 
boxplot(MASS~HABITAT*MF,data=agilis,ylim=c(10,45), 
col=c("forestgreen","ivory")) 
 
text(c(1, 2, 3, 4), c(25, 25, 35, 42), labels=c('a', 'a', 'b', 'c')) 
 

 
 
Use cex to increase font size and change the colour to dark red. 
 
boxplot(MASS~HABITAT*MF,data=agilis,ylim=c(10,45), 
col=c("forestgreen","ivory")) 
 
text(c(1, 2, 3, 4), c(25, 25, 35, 42), labels=c('a', 'a', 'b', 'c'), 
cex=1.5, col="darkred") 
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Because an ANOVA is a comparison of means (not medians), arguably, it is more suitable 
to present a bar graph with standard errors as confidence intervals. Some reviewers will 
insist on this. Others will be happy with boxplots. The library 'sciplot' allows you to plot 
a bar graph relatively easily if you need to. 
 
library(sciplot) 
 
attach(agilis) 
bargraph.CI( 
  MF, # categorical factor for the x-axis 
  MASS, # numerical DV for the y-axis 
  HABITAT, # grouping factor 
  legend=T, # Use legend=F if you don't want a legend 
  ylab="Agilis Mass (g)", 
  xlab="Study sites & sexes", 
  col=c("forestgreen","ivory"), 
  ylim=c(0,35)) # set y axis to 0 to 35 
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Can we add alphabet soup to this graph? We can, as follows: 
	
attach(agilis) 
bargraph.CI(MF, MASS, HABITAT, legend=T, ylab="Agilis Mass 
(g)", xlab="Study sites & sexes", 
col=c("forestgreen","ivory"), ylim=c(0,35)) 
 
text(c(1.5, 2.5,4.5,5.5), c(20, 20, 27, 30), 
labels=c('a', 'a', 'b', 'c'), cex=1.5, col="darkred") 
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Using 'glht' to apply Tukey's contrasts 
The TukeyHSD command used above will only work on aov models. The test won't work 
on other types of linear models such as linear mixed effects (lme or lme4) or generalised 
linear mixed effects models (glm). Instead you can use the 'glht' function in library 
'multcomp '. This same function also works on aov models, and we will use our dataset 
from above and an aov model above as an example: 
 
install.packages("multcomp") # if not already installed 
library(multcomp) 
	
Make sure your 'factor' of interest is actually a factor in R! 
your.data$your.factor <- as.factor(your.data$your.factor) 
	
Make sure your dataset is attached! 
attach(your.data) 
 
agilis <- read.table('agilis-morphometrics.csv', 
header=T,sep=',') 
 
Check the data: 
head(agilis) 
str(agilis) 
 
1) Turn month into a factor (it is currently a number) 
agilis$MONTH <- as.factor(agilis$MONTH) 
 
2) Attach your dataset 
attach(agilis) 
 
3) Create an ANOVA model 
agilis.aov <- aov(RBC~MONTH,data=agilis) 
 
Apply a Tukey test to the model (example code): 
fit.glht <- glht(your.model,linfct=mcp(YOUR.FACTOR="Tukey")) 
	
The actual code for our agilis example: 
agilis.glht <- glht(agilis.aov,linfct=mcp(MONTH="Tukey")) 
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plot(agilis.glht) 
This is a plot of the confidence intervals of the contrasts. This plot is typically not 
included in scientific reports, but can be useful for you to look at. 
 
summary(agilis.glht) 
 

 
 
The results should broadly agree with the TukeyHSD example we used earlier 
(although may not be identical).  
  

RESULT 
  Simultaneous Tests for General Linear Hypotheses 
 
Multiple Comparisons of Means: Tukey Contrasts 
 
 
Fit: aov(formula = RBC ~ MONTH, data = agilis) 
 
Linear Hypotheses: 
             Estimate Std. Error t value Pr(>|t|)     
4 - 3 == 0  6.060e+10  5.757e+11   0.105  1.00000     
5 - 3 == 0  2.742e+11  5.180e+11   0.529  0.99467     
6 - 3 == 0 -5.498e+11  5.359e+11  -1.026  0.90504     
7 - 3 == 0 -8.399e+11  5.251e+11  -1.599  0.58978     
8 - 3 == 0 -1.737e+12  6.052e+11  -2.870  0.04861 *   
5 - 4 == 0  2.136e+11  4.110e+11   0.520  0.99511     
6 - 4 == 0 -6.104e+11  4.334e+11  -1.408  0.71329     
7 - 4 == 0 -9.005e+11  4.199e+11  -2.144  0.26022     
8 - 4 == 0 -1.797e+12  5.165e+11  -3.480  0.00754 **  
6 - 5 == 0 -8.239e+11  3.532e+11  -2.333  0.17888     
7 - 5 == 0 -1.114e+12  3.365e+11  -3.311  0.01306 *   
8 - 5 == 0 -2.011e+12  4.513e+11  -4.456  < 0.001 *** 
7 - 6 == 0 -2.901e+11  3.635e+11  -0.798  0.96604     
8 - 6 == 0 -1.187e+12  4.718e+11  -2.516  0.11935     
8 - 7 == 0 -8.970e+11  4.595e+11  -1.952  0.36360     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 
1 
(Adjusted p values reported -- single-step method)	
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cld(agilis.glht) 
This command automatically generates your alphabet soup letters for graphs and 
figures. 
 

 
 
We would interpret this to mean that RBC in March is not significantly different to April, 
May or June. April is not significantly different to March, May and June. May is not 
different to March, April and June. June is not significantly different to any month. July 
is only significantly different to March. August is significantly different to March, April 
and May, but is not different to June and July. 
 
 
glht: factorial interaction terms 
If the model has an interaction term in it that involves your factor of interest and 
another factor, you may need to include an interaction average: 
 
fit.glht <- glht(your.lme,linfct=mcp(YOUR.FACTOR="Tukey",	
interaction_average=TRUE)) 
	
summary(fit.glht) 
	
	
glht: covariate interaction terms 
If	the	model	has	an	interaction	term	that	involves	your	factor	of	interest	and	a	covariate	in	
it,	then	you	may	need	to	include	an	interaction	average:	
	
fit.glht <- glht(your.lme,linfct=mcp(YOUR.FACTOR="Tukey",	
covariate_average=TRUE)) 
	
summary(fit.glht) 
 
  

RESULT 
  > cld(agilis.glht) 
   3    4    5    6    7    8  
"bc" "bc"  "c" "ac" "ab"  "a"	
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Non-Parametric Equivalents of Variability Tests 
Non-parametric tests do not assume that the data has any given distribution. These tests 
mean that data that is not normally distributed can be tested without resorting to 
transformations. Some researchers argue that we should always use non-parametric tests 
in the biological sciences because we don't actually know if increments of measured 
variables (such as mass) are isometric to outcomes of interest (such as survivorship and 
fitness) (i.e. you can't know that having twice the mass = exactly twice the fitness).  
 
 

General non-parametric test for two groups 
This non-parametric equivalent of a t-test is better known as a Mann-Whitney U, but also 
called a Wilcoxon rank sum test or Mann-Whitney-Wilcoxon test. Non-parametric tests 
are suitable for data that is not normally distributed and data that is bounded, such as a 
percentage that is bounded by zero and one. Ratios can also be tested using non-
parametric tests. In all cases, the non-parametric test avoids the need to transform the 
data ahead of time. 
 
A Mann-Whitney U tests whether the medians are different. If you use a Mann-Whitney 
U test, you'll need to present data as box plots and medians with confidence intervals. 
 

ASSUMPTIONS OF MANN-WHITNEY U 
(1) The responses are ordinal (though not necessarily scaled) 

(i.e. it is possible to say of two observations, which is larger) 
(2) Observations must be independent (collected randomly) 

 
We'll use the same datasets that we examined in the previous lab. This is so you can 
compare the results of the parametric and non-parametric equivalents. If you like, you 
can scroll back to the corresponding parametric test and check whether the P-values 
agree. 
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Import the data: 
swallows <- read.table('swallows-adults.csv',header=T,sep=',') 
head(swallows) 
str(swallows) 
 
Here's another way to check if BROODPATCH is a factor: 
is.factor(swallows$BROODPATCH) 
 
Change BROODPATCH to a factor: 
swallows$BROODPATCH <- as.factor(swallows$BROODPATCH) 
is.factor(swallows$BROODPATCH) 
 
Apply the Mann-Whitney U test: 
wilcox.test(MASS~BROODPATCH, data = swallows) 
	

	
 
The implication is that there is a difference in the median mass (g) for sexes of swallows 
(as estimated by 'broodpatch'). 
 
 

General non-parametric paired test for two groups 
A Wilcoxon signed-rank test can be used to test differences in paired observations. This 
is the non-parametric equivalent of a paired t-test 
 
The Wilcoxon signed-rank test uses the same command as a Mann-Whitney U test in R. 
The data has to be set up differently in the csv file, but otherwise the commands are very 
similar to that given above. 
 

ASSUMPTIONS OF WILCOXON SIGNED RANK 
(1) The responses are on the same scale 

(i.e. they are comparable, not enough just to be ordinal) 
(2) Observations must be independent (collected randomly) 
(3) Observations are paired (i.e. in blocks of two) 

 
  

RESULT 
  
 Wilcoxon rank sum test with continuity correction 
 
data:  MASS by BROODPATCH 
W = 819, p-value = 1.85e-05 
alternative hypothesis: true location shift is not equal to 0	
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Import the paired mean seedling height data: 
msh.p <- read.table('msh-paired.csv',header=T,sep=',') 
str(msh.p) 
 
wilcox.test(msh.p$TREATMENT, msh.p$CONTROL, paired=TRUE) 
	

	
 
The implication is that there is a difference in the median value of mean shrub heights 
(msh) in the paired plots that were studied. 
 
 

	  

RESULT 
  Wilcoxon signed rank test 
 
data:  msh.p$TREATMENT and msh.p$CONTROL 
V = 71, p-value = 0.009277 
alternative hypothesis: true location shift is not equal to 0	
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General non-parametric test: one factor with multiple levels 
We are now going to look at the non-parametric equivalent of a one-way ANOVA. We'll 
use the agilis data from the last lab because the RBC and Month model didn't perfectly 
fit the requirements for an ANOVA and it will be interesting to see if a non-parametric 
test gives a different answer to the test based on ANOVAs. 
 
The Kruskal-Wallis test is a non-parametric equivalent of a one-way ANOVA. 
 

ASSUMPTIONS OF KRUSKAL-WALLIS TEST 
(1) Observations must be independent (collected randomly) 
(2) One predictor factor (but can have many levels) 

 
Import the dataset: 
agilis <- read.table('agilis-morphometrics.csv', 
header=T,sep=',') 
 
Check the data: 
head(agilis) 
str(agilis) 
 
Turn month into a factor (it is currently a number) 
agilis$MONTH <- as.factor(agilis$MONTH) 
 
Apply a Kruskal-Wallis test: 
kruskal.test(RBC~MONTH,data=agilis) 
 
Note that we cannot add terms like HABITAT+MONTH or	HABITAT*MONTH because a 
Kruskal-Wallis Test only allows for one predictor variable (i.e. it is a 'one-way' test).	
	

	
 
This suggests there is a significant difference in the RBC values by month for the agile 
antechinus studied. However, much like an ANOVA, we need to use a post-hoc test to 
identify which months are different to which other months. Technically, the Kruskal-
Wallis test is testing for a difference in the overall distribution of values among groups, 
and we can't really say that significance indicates a difference in median or means. 
However, from a practical point of view, boxplots are usually presented with Kruskal-
Wallis tests and we take significance to indicate a difference in the group 'central 
tendencies'. 

RESULT 
  Kruskal-Wallis rank sum test 
 
data:  RBC by MONTH 
Kruskal-Wallis chi-sqred = 29.89, df = 5, p-value = 1.55e-05	
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If you wanted to check this against a visual test for differences in medians, boxplots can 
be set to have a 'notch'. This notch represents a (roughly) 95% CI for the median  (actually 
the notch = +/-1.58 IQR/sqrt(n)). If two notches overlap, you can take this to 
suggest the medians are not different. If they do not overlap, then this can be taken to 
be 'strong evidence' that the medians are different. 
 
Reorder Month so that it will appear in the right order on the boxplot (i.e. not 
alphabetically). 
 
agilis$Month<-factor(agilis$Month, c("Mar", "Apr", "May", 
"Jun", "Jul", "Aug")) 
 
boxplot(RBC~Month, las = 2, data=agilis, notch=T, 
col="grey30") 
 

 
 
So, we could take the plot as evidence that Mar, Apr and May have equivalent RBC 
medians, but May is different to Jun, Jul and August. However, there is no adjustment for 
multiple comparisons here. It is possible to adjust the size of notches, but working out 
how to adjust for multiple comparisons is not straightforward (i.e. it wouldn't simply be 
a matter of applying a multiplier, and these notches are extremely rough anyway) 
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General non-parametric pairwise comparison 
If you obtain a significant result for a Kruskal-Wallis test, and you have three or more 
levels in a given predictor factor, then you will need to perform a non-parametric 
equivilent of a Tukey's test. One good option is the Dunn's Test, a non-parametric 
pairwise comparison. The assumptions are the same as for a Kruskal-Wallis test. 
 
For a Dunn's test: 
 
install.package("dunn.test") 
library(dunn.test) 
 
attach(your.data) 
dunn.test(RESPONSE, PREDICTOR.GROUP) 
 
There are a number of different corrections you can apply. Bonferroni is the most 
standard, although Holm's correction is pretty widely used, and some people seem to 
prefer it... 
 
attach(your.data) 
dunn.test(RESPONSE, PREDICTOR.GROUP, method="bonferroni") 
dunn.test(RESPONSE, PREDICTOR.GROUP, method="sidak") 
dunn.test(RESPONSE, PREDICTOR.GROUP, method="holm") 
dunn.test(RESPONSE, PREDICTOR.GROUP, method="hs") 
dunn.test(RESPONSE, PREDICTOR.GROUP, method="hochberg") 
dunn.test(RESPONSE, PREDICTOR.GROUP, method="bh") 
dunn.test(RESPONSE, PREDICTOR.GROUP, method="by") 
 
We will use a Bonferroni correction for multiple comparison error: 
 
attach(agilis) 
dunn.test(RBC, MONTH, method="bonferroni") 
 
 
The result output is in the form of a table with P values and differences next to each 
other. Each contrast has a difference between means (Col Mean - Row Mean) which is 
the top number, and a P value, which is the bottom number. P values 'top out' at 1.0000, 
although in a report you would probably write this as P > 0.999.  
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The March RBC was significantly higher than the August RBC (P = 0.014). The RBC in April 
was significantly higher than the RBC in August (P = 0.007). The RBC in May was 
significantly higher than the RBC in July (P = 0.002) and August (P < 0.001). If you are 
unsure which median value is higher, you can always just boxplot the data and check it 
that way. If you see agreement between the Dunn's Test and the notched boxplots, that 
would be quite strong evidence for a difference. 
  

RESULT 
   Kruskal-Wallis rank sum test 
 
data: RBC and MONTH 
Kruskal-Wallis chi-squared = 29.8904, df = 5, p-value = 0 
 
 
                          Comparison of RBC by MONTH                            
                                 (Bonferroni)                                   
Col Mean-| 
Row Mean |          3          4          5          6          7 
---------+------------------------------------------------------- 
       4 |   0.314788 
         |     1.0000 
         | 
       5 |  -0.489010  -1.057298 
         |     1.0000     1.0000 
         | 
       6 |   1.293663   1.181694   2.680513 
         |     1.0000     1.0000     0.0551 
         | 
       7 |   1.874960   1.913177   3.678723   0.801222 
         |     0.4560     0.4179    0.0018*     1.0000 
         | 
       8 |   3.114881   3.298577   4.737712   2.525763   1.959728 
         |    0.0138*    0.0073*    0.0000*     0.0866     0.3752 
 
alpha = 0.05 
Reject Ho if p <= alpha/2	
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Appendices 
 

	

Everything	after	this	page	is	intended	only	to	help	
you	complete	assignments	in	other	units	or	during	

an	honours	year.	
	
	

Nothing	after	this	page	is	assessable	for	BIO3011.	
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Generalised linear models 
What if we want to examine count of binary response data in a more sophisticated way 
than chi squared tests allow? The mynas dataset we used earlier has various predictor 
variables, but because these are not all factors (i.e. cannot be used to generate a 
contingency table), chi-squared tests are not going to be much help. 
 
The variables we have are: 

 
'data.frame': 160 obs. of  7 variables: 
$ REGION   : Factor w/ 4 levels "Peri-urban","Rural",..: 3 3 3 3 3 3 3 3 3 
3 ... 
$ FORAGE   : num  0.656 0.25 0.656 0.533 0.723 ... 
$ VIGIL    : num  0.292 0.757 0.314 0.476 0.23 ... 
$ PECK.rate: int  5 4 4 5 4 5 5 5 5 3 ... 
$ HUMANS   : Factor w/ 2 levels "NO","YES": 2 1 1 1 2 2 2 1 2 1 ... 
$ CONSPECS : Factor w/ 2 levels "NO","YES": 2 2 2 2 2 2 2 2 2 2 ... 
$ VEHICLES : Factor w/ 2 levels "NO","YES": 2 1 1 2 2 1 1 2 2 2 ... 

 
REGION      The type of landscape 
FORAGE:  Percentage of time spent foraging 
VIGIL   Percentage of time spent vigilant 
PECK.rate  The response variable 
HUMANS  Were humans (aside from the researcher) present? yes/no 
CONSPECS  Were conspecifics present? yes/no 
VEHICLES  Were vehicles present? yes/no 
 
What we will do now is make use of generalised linear models (glm). A generalised linear 
model is an advance over general linear models (lm) and ANOVAs (aov), in that a 
generalised linear model can make use of some clever mathematics to model data using 
different distributions. The most commonly used are Gaussian (normal, the same as a lm), 
Poisson (when the response is count data) and Binomial (when the response is binary). 
 
Generalised linear models use a "link" function to specify the distribution of residuals. 
For the most common two types of distribution used are: 
 

Log    used for count data    η = log µ  

Logistic (logit)   used for binary data 	 	 η  = log (µ / (1 -  µ))	
	
model.glm <- glm(y ~ x, family = binomial(link="logit")) 
 
model.glm <- glm(y ~ x, family = poisson(link = "log"))  
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A generalised linear model is a test of deviance not variance. Deviance is a measure of 
fit, a bit like the other goodness of fit measures we've looked at today. It is a measure 
of how well your data fits a model 

 
ASSUMPTIONS	OF	GENERALISED	LINEAR	MODEL	
(1)	Observations	are	independent	(collected	randomly)	
(2)	Correct	link	function	is	used	
	 Residuals	must	fit	the	nominated	error	distribution	
	 Overdispersion	should	not	occur	

 
These are the only two assumptions. If the residuals do not fit 'over-dispersion' will occur. 
Can check this by looking at the residual deviance: 

• If the model does not fit, overdispersation occurs 
• When this happens, the residual deviance will be larger than the degrees of 

freedom 
• If this occurs, you may have to switch to a negativebionomial, quasibinomial (for 

binomial) or quasipoisson (for poisson) distribution and try again 
 

PROBLEMS	CAN	OCCUR	IF…	
(1)	Predictor	variables	are	correlated	
(2)	Model	is	over-parameterised	
(3)	Covariates	are	bounded	or	not	normally	distributed	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



	
	

140	

GLM: Poisson distribution 
 
myna <- read.table('mynas_peck.csv',header=T,sep=',') 
str(myna) 
 
First things first. Let's check (roughly) for normality of our percentages and check they 
don't correlate. Anything with a correlation value less than -0.6 or greater than +0.6 may 
raise concerns. 
 
cor(myna$FORAGE, myna$VIGIL, method = "pearson") 
 

	
	
There is definitely a potential problem here. -0.901 is strong negative correlation. In this 
case, why wouldn't we include both foraging or vigilance in the model? In a sense, these 
two correlated variables are measuring the same thing (probably an index of predator 
wariness). Including both variables as predictors will cause problems because they are 
attempting to explain the same variance (or because this is a glm, deviance) in the model. 
If both were included as predictors, we would describe the two predictors as 'confounded' 
because it wouldn't be possible to disentangle their respective effects. 
	
boxplot(myna$FORAGE) 
boxplot(myna$VIGIL) 
 

 
 
These boxplots don't look too bad. If these were response variables we would transform 
them. A predictors they are probably okay. Pick one to use in the model (it doesn't really 
matter which one--they are effectively the same thing). 
 
 
  

RESULT 
 [1] -0.9010008	



	
	

141	

Now we can create a model. I'm going to use foraging, but either predictor is fine. 
 
myna.glm <- glm(PECK.rate ~ FORAGE * HUMANS * CONSPECS * VEHICLES * 
REGION, data = myna, family = poisson(link = "log")) 
 
Check a summary of the full model: 
summary(myna.glm) 
 
Are any of the interactions significant? Do any of them have a P < 0.05? 
 
The output is quite lengthy, and is pasted on the next page. Note that the way the output 
is generated lays out all possible contrasts of factorial predictors. NA appears when a 
particular pairing doesn't exist in the data. So that for example a situation where Human 
= Yes, Conspecifics = Yes, Vehicles = Yes was never recorded in an Urban environment 
(the very last line of output with NA next to it). 
 
Also, it is worth being aware at this point that the effect sizes are uninterpretable unless 
you can reverse log numbers in your head. They are presented as the transformed values 
(logged, because of the link function we used). 
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RESULT 
 Call: 
glm(formula = PECK.rate ~ FORAGE * HUMANS * CONSPECS * VEHICLES *  
    REGION, family = poisson(link = "log"), data = myna) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-0.6655  -0.1941   0.0000   0.1729   0.9167   
 
Coefficients: (8 not defined because of singularities) 
                                                        Estimate Std. Error z value Pr(>|z|) 
(Intercept)                                              1.70064    1.23823   1.373    0.170 
FORAGE                                                  -0.65030    1.73887  -0.374    0.708 
HUMANSYES                                               -0.84695   31.92537  -0.027    0.979 
CONSPECSYES                                              0.10434    3.40645   0.031    0.976 
VEHICLESYES                                             -0.62352    1.85290  -0.337    0.736 
REGIONRural                                              0.50278    1.66703   0.302    0.763 
REGIONSuburban                                           0.22102    2.90307   0.076    0.939 
REGIONUrban                                              0.58389    5.63319   0.104    0.917 
FORAGE:HUMANSYES                                         0.99741   45.23772   0.022    0.982 
FORAGE:CONSPECSYES                                      -0.10079    5.13540  -0.020    0.984 
HUMANSYES:CONSPECSYES                                    0.14058   36.47727   0.004    0.997 
FORAGE:VEHICLESYES                                       0.73939    2.61155   0.283    0.777 
HUMANSYES:VEHICLESYES                                   -0.95617   31.42556  -0.030    0.976 
CONSPECSYES:VEHICLESYES                                 -1.01260    4.07884  -0.248    0.804 
FORAGE:REGIONRural                                      -0.87373    2.43245  -0.359    0.719 
FORAGE:REGIONSuburban                                   -0.33694    4.24338  -0.079    0.937 
FORAGE:REGIONUrban                                      -0.88110    7.70457  -0.114    0.909 
HUMANSYES:REGIONRural                                    1.08223   10.22576   0.106    0.916 
HUMANSYES:REGIONSuburban                                -0.73287   11.87381  -0.062    0.951 
HUMANSYES:REGIONUrban                                   -0.05128    7.59494  -0.007    0.995 
CONSPECSYES:REGIONRural                                 -1.54173    4.26170  -0.362    0.718 
CONSPECSYES:REGIONSuburban                              -0.64087    4.33917  -0.148    0.883 
CONSPECSYES:REGIONUrban                                 -1.86311    6.54198  -0.285    0.776 
VEHICLESYES:REGIONRural                                  0.62216    5.37331   0.116    0.908 
VEHICLESYES:REGIONSuburban                               0.44497    6.59480   0.067    0.946 
VEHICLESYES:REGIONUrban                                  1.83943    7.25732   0.253    0.800 
FORAGE:HUMANSYES:CONSPECSYES                            -0.24633   51.44416  -0.005    0.996 
FORAGE:HUMANSYES:VEHICLESYES                             1.83710   44.52425   0.041    0.967 
FORAGE:CONSPECSYES:VEHICLESYES                           1.44039    6.00074   0.240    0.810 
HUMANSYES:CONSPECSYES:VEHICLESYES                        0.64441   30.28584   0.021    0.983 
FORAGE:HUMANSYES:REGIONRural                            -1.35406   14.78706  -0.092    0.927 
FORAGE:HUMANSYES:REGIONSuburban                          1.43465   16.26004   0.088    0.930 
FORAGE:HUMANSYES:REGIONUrban                             0.53399   10.40299   0.051    0.959 
FORAGE:CONSPECSYES:REGIONRural                           2.48408    6.36251   0.390    0.696 
FORAGE:CONSPECSYES:REGIONSuburban                        0.74691    6.49397   0.115    0.908 
FORAGE:CONSPECSYES:REGIONUrban                           2.65640    9.17892   0.289    0.772 
HUMANSYES:CONSPECSYES:REGIONRural                        1.43287   20.67838   0.069    0.945 
HUMANSYES:CONSPECSYES:REGIONSuburban                    -1.36013   21.02278  -0.065    0.948 
HUMANSYES:CONSPECSYES:REGIONUrban                        1.36053   19.25319   0.071    0.944 
FORAGE:VEHICLESYES:REGIONRural                          -0.69581    7.67118  -0.091    0.928 
FORAGE:VEHICLESYES:REGIONSuburban                       -0.13214    9.17660  -0.014    0.989 
FORAGE:VEHICLESYES:REGIONUrban                          -2.29267    9.95876  -0.230    0.818 
HUMANSYES:VEHICLESYES:REGIONRural                       -0.38255    2.51481  -0.152    0.879 
HUMANSYES:VEHICLESYES:REGIONSuburban                     2.82335    8.34439   0.338    0.735 
HUMANSYES:VEHICLESYES:REGIONUrban                       -0.56255    2.04104  -0.276    0.783 
CONSPECSYES:VEHICLESYES:REGIONRural                      1.10659    6.98549   0.158    0.874 
CONSPECSYES:VEHICLESYES:REGIONSuburban                   1.94293    7.61644   0.255    0.799 
CONSPECSYES:VEHICLESYES:REGIONUrban                      0.36954    9.62113   0.038    0.969 
FORAGE:HUMANSYES:CONSPECSYES:VEHICLESYES                -0.51067   45.21351  -0.011    0.991 
FORAGE:HUMANSYES:CONSPECSYES:REGIONRural                -2.37205   29.20126  -0.081    0.935 
FORAGE:HUMANSYES:CONSPECSYES:REGIONSuburban              2.25463   29.02321   0.078    0.938 
FORAGE:HUMANSYES:CONSPECSYES:REGIONUrban                -2.10929   26.66577  -0.079    0.937 
FORAGE:HUMANSYES:VEHICLESYES:REGIONRural                      NA         NA      NA       NA 
FORAGE:HUMANSYES:VEHICLESYES:REGIONSuburban             -4.99244   11.23960  -0.444    0.657 
FORAGE:HUMANSYES:VEHICLESYES:REGIONUrban                      NA         NA      NA       NA 
FORAGE:CONSPECSYES:VEHICLESYES:REGIONRural              -1.68433   10.10136  -0.167    0.868 
FORAGE:CONSPECSYES:VEHICLESYES:REGIONSuburban           -2.91475   10.77265  -0.271    0.787 
FORAGE:CONSPECSYES:VEHICLESYES:REGIONUrban              -0.91132   13.24266  -0.069    0.945 
HUMANSYES:CONSPECSYES:VEHICLESYES:REGIONRural                 NA         NA      NA       NA 
HUMANSYES:CONSPECSYES:VEHICLESYES:REGIONSuburban              NA         NA      NA       NA 
HUMANSYES:CONSPECSYES:VEHICLESYES:REGIONUrban                 NA         NA      NA       NA 
FORAGE:HUMANSYES:CONSPECSYES:VEHICLESYES:REGIONRural          NA         NA      NA       NA 
FORAGE:HUMANSYES:CONSPECSYES:VEHICLESYES:REGIONSuburban       NA         NA      NA       NA 
FORAGE:HUMANSYES:CONSPECSYES:VEHICLESYES:REGIONUrban          NA         NA      NA       NA 
 
(Dispersion parameter for poisson family taken to be 1) 
 
    Null deviance: 21.259  on 159  degrees of freedom 
Residual deviance: 11.747  on 104  degrees of freedom 
AIC: 624.26 
 
Number of Fisher Scoring iterations: 4	
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If none of the interactions are significant we should remove them from the model and 
re-apply the test. If we were going to publish this we might take some more care, 
removing the higher order (four and three way) interactions first and checking for lower 
order interactions. For the sake of speed though, let's just proceed with removing the 
interaction terms: 
	
myna.glm <- glm(PECK.rate ~ FORAGE + HUMANS + CONSPECS + VEHICLES + 
REGION, data = myna, family = poisson(link = "log")) 
 
Check a summary of the full model: 
summary(myna.glm) 
 
The results in the output you should look at are: 
 

 
 
Has	overdispersal	occurred?	How	can	you	tell?	
	
Overdispersion	occurs	if	the	residual	deviance	is	greater	than	the	degrees	of	freedom.	In	
this	case,	it	is	not	(20.378	is	less	than	152),	so	the	model	is	okay	in	that	regard.	
	
The	"dispersion	parameter"	of	1	assumes	the	variance	=	mean	(don't	worry	about	this	for	
now.	We'll	return	to	this	a	bit	later).	
	
The	numbers	in	red	are	the	estimated	intercept	and	slopes	on	the	log	scale.	These	are	effect	
sizes	and	the	Std. Error	is	the	error	of	the	effect	size.	If	you	were	to	present	this	as	a	
table	in	a	set	of	results	you	would	present	it	like	so:	
	

RESULT 
 
Coefficients: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)     1.21513    0.29569   4.109 3.97e-05 *** 
FORAGE         -0.02289    0.40026  -0.057    0.954     
HUMANSYES       0.02128    0.10048   0.212    0.832     
CONSPECSYES     0.04482    0.08777   0.511    0.610     
VEHICLESYES    -0.01227    0.08543  -0.144    0.886     
REGIONRural     0.04313    0.12123   0.356    0.722     
REGIONSuburban  0.06952    0.12261   0.567    0.571     
REGIONUrban     0.02047    0.12826   0.160    0.873     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
(Dispersion parameter for poisson family taken to be 1) 
 
    Null deviance: 21.259  on 159  degrees of freedom 
Residual deviance: 20.375  on 152  degrees of freedom 
AIC: 536.89 
 
Number of Fisher Scoring iterations: 4 
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Table 1. An example of how to present these results in a tabular form for a report. 
 

  Effect Size SE z P P < 0.05 
Intercept 1.22 0.30 4.11 <0.001 * 
FORAGE -0.02 0.40 -0.06 0.954  
HUMANS (yes) 0.02 0.10 0.21 0.832  
CONSPECIFICS (yes) 0.04 0.09 0.51 0.610  
VEHICLES (yes) -0.01 0.09 -0.14 0.886  
REGION (Rural) 0.04 0.12 0.36 0.722  
REGION (Suburban) 0.07 0.12 0.57 0.571  
REGION (Urban) 0.02 0.13 0.16 0.873   

 
The intercept wouldn't always be included in a results table because it isn't especially 
interesting (we expect it to depart from zero), so although I've included it, the intercept 
is often simply omitted. 

 
Breaking down the output 
 
DEVIANCE 
Deviance is a measure of 'goodness of fit', or maybe more accurately, 'badness of fit' 
because higher numbers indicate a greater deviance away from a good fit. That is, if the 
Deviance is high the observed values are not matching the expected values given the 
predictors we have included in the model. If the Deviance is low, then the observed 
values are matching the expected values given the predictors. This is the reverse of an 
R2 value, where a high R2 indicates a good fit and a low R2 indicates a poor fit. 
 
The output calculates and provides Deviance in two ways: the null Deviance and the 
residual deviance. The null deviance tells you how well the data fit a model that only 
includes the intercept (i.e. in the absence of any of the predictors, how well does the data 
fit the model). The residual Deviance tells you how much of the data is explained when 
the independent predictors are included in the model. If the predictors are important for 
explaining the response, we would expect the residual Deviance to be substantially lower 
than the null Deviance. 
 
In the above example, the null Deviance is 21.25 with 159 degrees of freedom, whereas 
the residual deviance is 20.38 with 152 degrees of freedom. We have lost some degrees 
of freedom because including the predictors eats away at degrees of freedom as per 
statistical analyses in general. 
 
This is not an especially substantial improvement in Deviance, and even without looking 
at the P values, we could take a guess that the data is probably not being explained by 
these predictors in a very convincing way. 
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Interpreting the Coefficients 
In the example above we produced a final table as per below (repeated from above): 
 
Table 1. An example of how to present results in a tabular form in a report. 
 

  Effect Size SE z P P < 0.05 
Intercept 1.22 0.30 4.11 <0.001 * 
FORAGE -0.02 0.40 -0.06 0.954  
HUMANS (yes) 0.02 0.10 0.21 0.832  
CONSPECIFICS (yes) 0.04 0.09 0.51 0.610  
VEHICLES (yes) -0.01 0.09 -0.14 0.886  
REGION (Rural) 0.04 0.12 0.36 0.722  
REGION (Suburban) 0.07 0.12 0.57 0.571  
REGION (Urban) 0.02 0.13 0.16 0.873   

 
However, one thing we are actually interested in is the real effect of a predictor, perhaps 
Foraging Time, on the response, in this case Peck.rate. However, coefficients 
(effect sizes) in glms are generated in complex ways, and interpreting them in terms of 
real world units is far from straightforward. If we want to know the effect of increasing 
Foraging Time by one unit, then we have to take into account the effects of the other 
predictors. The first point of importance is that interpretation of coefficients is different 
for numeric and categorical (factor) predictor variables. 
 
Numeric predictors: The coefficient represents an exponent of a term that can be used 
multiplicatively to work out the effect of increasing the predictor by 1 unit.  
 
Factorial predictors: The coefficient represents an exponent of a term that can be used 
multiplicatively to work out the effect relative to the base (first) level for the factor. The 
base level is the one that is missing for each factor in the output. For example, for Region, 
Periurban is missing, and Periurban is the base level. 
 
Because the effects of the coefficients are dependent on other predictors, and because 
the coefficient is an exponential term to a base (e.g. exponential to base Euler's number 
(2.71828) for Poisson distributions), there are three important points to keep in mind. 
 

1)  The effect of a predictor depends on the level of the response 
2)  Additive changes in predictors has multiplicative effects on the response 
3)  It isn't possible to just interpret the coefficients unless you can mentally compute 

arbitrary exponentials in your head whilst humming Mozart and painting a Neo-
Impressionist masterpiece. 
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The best, possibly only, way to really understand how to turn the effect sizes into 
comprehensible units is by use of examples. The first thing we need to do is look at our 
predictor variables: 
 

• Region  Factorial with four levels (periurban, rural, suburban, urban) 
• Forage  Numeric 
• Vigil  Numeric 
• Humans Factorial with two levels (yes, no) 
• Conspecs Factorial with two levels (yes, no) 
• Vehicles Factorial with two levels (yes, no) 

 
We used Region, Forage, Humans, Conspecifics and Vehicles in the model, and all of the 
predictors need to be taken into account when working out effect sizes in actual units. 
 
• The Forage coefficient represents the effect for every 1 unit increase in Forage. 
• The Humans coefficient represents the effect of Yes, relative to No (No = zero). 
• The Conspecs coefficient represents the effect of Yes, relative to No (No = zero). 
• The Vehicles coefficient represents the effect of Yes, relative to No (No = zero). 
• The Rural coefficient represents the effect of Rural, relative to Periurban (= zero). 
• The Suburbun coefficient represents the effect of Suburban, relative to Periurban. 
• The Urban coefficient represents the effect of Urban, relative to Periurban. 
• The Intercept coefficient is the baseline, and all other coeffecients are relative to it 

 
To work out the effects of the various predictors we need to take into account the state 
of the whole system, so to speak. The following examples should help clarify this: 
 
The estimated Peck Rate for a Forage of 1.0 (100% of time spent foraging), with no 
Humans, no conspecifics, no vehicles, in a Periurban environment: 
 
exp(1.21513 + 1*-0.02289 + 0 + 0 + 0 + 0) 
[1] 3.294453 
 
The estimated Peck Rate for a Forage of 0.5 (50% of time spent foraging), with no 
Humans, no conspecifics, no vehicles, in a Periurban environment: 
 
exp(1.21513 + 0.5*-0.02289 + 0 + 0 + 0 + 0) 
[1] 3.332374 
 
The estimated Peck Rate for a Forage of 0.5 (50% of time spent foraging), with Humans, 
no conspecifics, no vehicles, in a Periurban environment: 
 
exp(1.21513 + 0.5*-0.02289 + 0.02128 + 0 + 0 + 0) 
[1] 3.404047 
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The estimated Peck Rate for a Forage of 0.5 (50% of time spent foraging), with Humans, 
no conspecifics, no vehicles, in a Suburban environment: 
 
exp(1.21513 + 0.5*-0.02289 + 0.02128 + 0 + 0 + 0.06952) 
[1] 3.649116 
 
 
Pretty soon, you can see how by playing around with the numbers you can work out the 
situation under which Peck Rate is estimated to be highest, and the situation under which 
Peck Rate is estimated to be lowest. 
 
Note also, that we are using 0.5, 1.0 etc for Forage, because we have a variable that was 
measured as a percentage. If instead you had measured the number of minutes spent 
foraging instead, then 1*-0.02289 would represent 1 min spent foraging, 2*-
0.02289 would represent two minutes spent foraging etc. 
 

Using the Predict Function 
 
Note that you can also use the predict function to produce the same estimates: 
 
The estimated Peck Rate for a Forage of 0.5 (50% of time spent foraging), with no 
Humans, no conspecifics, no vehicles, in a Periurban environment (as above): 
 
exp(1.21513 + 0.5*-0.02289 + 0 + 0 + 0 + 0) 
[1] 3.332374 
 
Using the	predict function:	
	
# create a dataframe holding the model states you want 
# be careful to get spelling exactly right! 
 
newdata <- data.frame(FORAGE = 0.5, HUMANS = "NO", CONSPECS = 
"NO", VEHICLES = "NO", REGION = "Peri-urban") 
	
# use the model you created earlier and predict function 
 
predict(myna.glm, newdata, type="response") 
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Using the predict function: graphing output for a given range 
 
You can also ask the predict function to return a range of responses for a given 
predictor. This is typically easiest to plot and interpret if you look at a range for one 
predictor while keeping the others set, which we will do here for forage. 
 
myna.glm <- glm(PECK.rate ~ FORAGE + HUMANS + CONSPECS + VEHICLES + 
REGION, data = myna, family = poisson(link = "log")) 
 
summary(myna$FORAGE) # to see ranges 
 
forage.data<-seq(0, 1, by=0.01) # create a range of numbers from 0 to 
1 at 0.01 increments. This could be any range of numbers but because 
Forage is a proportion from zero to one, this is a sensible range to 
look at. 
 
forage.data # Look at the forage data 
 
newdata <- data.frame(FORAGE = forage.data, HUMANS = "NO", CONSPECS 
= "NO", VEHICLES = "NO", REGION = "Peri-urban") 
 
newdata # look at the dataframe 
 
predict(myna.glm, newdata, type="response") # get responses across 
the specified range. This will just spit out numbers, which lets us 
check it is working. 
 
RESPONSE <- predict(myna.glm, newdata, type="response") # drop into 
an object called RESPONSE 
 
plot(RESPONSE~FORAGE, newdata, type="l") # Plot status across the 
ranges of FORAGE 
 

 
Counterintuitively,	 peck	 rate	 is	 highest	when	 time	 spent	 foraging	 is	 lowest.	 Perhaps	birds	
compensate	for	less	time	foraging	by	pecking	faster?	
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Relative Strength of Effect 
 

But what if you simply want to be able to discuss the effects of the predictors in terms 
of their relative strengths? The following approach has just been made up by me right at 
this moment, so you probably want to run it past a real statistician before using it in 
public. That said, in principle it seems like this ought to work fine. 
 

1) Turn the z values or t values into non-signed values (all positive) 
2) Sum up and average any z or t values for factors with multiple levels  
3) Work out the percentage of each z or t value relative to the intercept z or t value 
4) Arbitrarily group predictors as follows 

• >50% Very Strong Relative Effect 
• 30-50% Strong Relative Effect 
• 15-30% Moderate Relative Effect 
• 10-15% Weak Relative Effect 
• 5-10% Very Weak Relative Effect 
• <5% Negligible Relative Effect 

 
RELATIVE EFFECT EXAMPLES 

 
Relative effects of predictors on the Peck Rate of mynas 
 
Call: 
glm(formula = PECK.rate ~ FORAGE + HUMANS + CONSPECS + VEHICLES +  
    REGION, family = poisson(link = "log"), data = myna) 
 
Coefficients: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)     1.21513    0.29569   4.109 3.97e-05 *** 
FORAGE         -0.02289    0.40026  -0.057    0.954     
HUMANSYES       0.02128    0.10048   0.212    0.832     
CONSPECSYES     0.04482    0.08777   0.511    0.610     
VEHICLESYES    -0.01227    0.08543  -0.144    0.886     
REGIONRural     0.04313    0.12123   0.356    0.722     
REGIONSuburban  0.06952    0.12261   0.567    0.571     
REGIONUrban     0.02047    0.12826   0.160    0.873    	
 
Forage  = 0.057/4.109 = 0.0139 = 1.4%  = Negligible effect 
Humans  = 0.212/4.109 = 0.0516 = 5.1%  = Very weak effect 
Conspecifics  = 0.511/4.109 = 0.1243 = 12.4%  = Weak effect 
Vehicles  = 0.144/4.109 = 0.0350 = 3.5%  = Negligible effect 
Region = (0.356 + 0.567 + 0.160) / 3 = 0.361 
 = 0.361/4.109 = 0.0879 = 0.9%  = Negligible effect 
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Relative	effects	of	predictors	on	the	number	of	darters	observed	in	two	rivers	
	
Call: 
glm(formula = darters ~ river + pH + temp, family = poisson, data = 
darterData) 
 
Coefficients: 
              Estimate Std.Error z value Pr(>|z|) 
(Intercept)   3.144257  0.218646  14.381  < 2e-16 *** 
riverWatauga -0.049016  0.051548  -0.951  0.34166 
pH            0.086460  0.029821   2.899  0.00374 ** 
temp         -0.059667  0.009149  -6.522  6.95e-11 *** 
 
River System = 0.951/14.381 = 0.0661 = 6.6%  = Very weak effect 
pH  = 2.899/14.381= 0.2015 = 20.2%  = Moderate effect 
Temperature  = 6.522/14.381 =  0.4535 = 45.4%  = Strong effect 
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Evaluating assumptions for a GLM 
We really only have one assumption to check (is the link function correct?), but we do 
need to check this using a few different checks. 
1) Check for overdispersion 
2) Look at diagnostic plots 
3) Check that mean:variance is approximately 1:1 
 
myna.glm <- glm(PECK.rate ~ FORAGE + HUMANS + CONSPECS + VEHICLES + 
REGION, data = myna, family = poisson(link = "log")) 
 
Our first step is to compare the Residual Deviance with the degrees of freedom. This is 
taken from the summary(myna.glm) output. We have Residual deviance: 20.378 on 152 
degrees of freedom, which is fine. We want to see a lower residual deviance than degrees 
of freedom. If residual deviance is greater than the degrees of freedom, then 
'overdispersion' has occurred, and the assumptions of the model are not met. 
 
Next check diagnostic plots of the model. These are interpeted exactly the same way as 
diagnostic plots for other types of linear models. That is, you don't want to see a wedge 
in the residuals vs fitted (test of equal variance of residuals), but you do want to see the 
QQ dots following the line (test of normality of residuals). 
 
par(mfrow=c(2,2)) 
plot(myna.glm)	
 

 
 
These look mostly fine. The QQ plot is probably the worst of them, and it would be 
borderline for being acceptable.  
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We also have to check that the assumption (Dispersion parameter for poisson 
family taken to be 1) is satisfied. To do this we need to check the mean and 
variance for the response variable split up by the main predictor of interest. We want to 
see that they are approximate equal, i.e. 1:1. 
 
attach(myna) 
tapply(PECK.rate,REGION,mean) 
tapply(PECK.rate,REGION,var) 
	
tapply(PECK.rate,REGION,mean) 
Peri-urban Rural Suburban Urban  
3.375 3.550 3.675 3.500 
 
tapply(PECK.rate,REGION,var) 
Peri-urban Rural Suburban Urban  
0.2916667 0.5615385 0.6352564 0.4615385 
 
The variances are well below the means. We could accept a difference of maybe ±25% 
but this difference is too extreme. So that actually, we need to re-run the model using a 
quaispoisson distribution. But why didn't we just start with a quasipoisson distribution 
and save the hassle? Remember:  simpler	models	are	always	preferred.	
	
We start with the simplest approach and work towards complexity if it is needed. Reapply 
the test using a quasipoisson distribution. Notice how the assumed dispersion parameter 
of 1 has now been adjusted to a value of 0.1380571. Remodel using the quasipoisson 
distribution:	
 
myna.glm <- glm(PECK.rate ~ VIGIL + HUMANS + CONSPECS + VEHICLES + 
REGION, data = myna, family = quasipoisson(link = "log")) 
 
Check a summary of the full model: 
summary(myna.glm) 
 
If either dispersion > df or var/mean is not equal to 1 (roughly) then you need to use a 
quasipoisson distribution or a quasibinomial. You will find that the dispersion parameter 
changes (it is no longer taken to be 1). Overdispersion will probably still occur, but this 
is no longer a concern if you are using one of the quasi- distributions. 
 
To check for overdisperstion in a glmer model (i.e. one with mixed effects) use dispersion 
check function in library blemco. 
	
install.packages("blemco")  
library(blemco) 
dispersion_glmer(yourmodel.glmer) 
 
# if over 1.4 or under 0.75 you may have dispersion problems 
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Notice how the dispersion parameter is no longer taken to be 1? You can check the 
diagnostic plots again, although you'll find that the qq plot isn't improved tremendously.	
	 	

RESULT 
 
> myna.glm <- glm(PECK.rate ~ VIGIL + HUMANS + CONSPECS + VEHICLES 
+ REGION, data = myna, family = quasipoisson(link = "log")) 
> summary(myna.glm) 
 
Call: 
glm(formula = PECK.rate ~ VIGIL + HUMANS + CONSPECS + VEHICLES +  
    REGION, family = quasipoisson(link = "log"), data = myna) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-0.9742  -0.2982  -0.1761   0.2742   1.1920   
 
Coefficients: 
               Estimate Std. Error t value Pr(>|t|)     
(Intercept)     1.19413    0.05408  22.080   <2e-16 *** 
VIGIL           0.02058    0.15043   0.137    0.891     
HUMANSYES       0.02152    0.03723   0.578    0.564     
CONSPECSYES     0.04459    0.03266   1.366    0.174     
VEHICLESYES    -0.01247    0.03165  -0.394    0.694     
REGIONRural     0.04314    0.04507   0.957    0.340     
REGIONSuburban  0.06934    0.04558   1.521    0.130     
REGIONUrban     0.02021    0.04756   0.425    0.671     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
(Dispersion parameter for quasipoisson family taken to be 0.1380548) 
 
    Null deviance: 21.259  on 159  degrees of freedom 
Residual deviance: 20.375  on 152  degrees of freedom 
AIC: NA 
 
Number of Fisher Scoring iterations: 4 
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Adjusting GLMs for different sampling efforts 
 
An offset variable can be used to adjust for differences in sampling effort in a glm. In the 
following example there is a sampling effort variable (this would be a column in your 
data sheet with trap nights or samples per site) included as YOUR.SAMPLING.EFFORT. 
 
model.glm <- glm(YOUR.COUNT ~ YOUR.PREDICTORS + 
offset(YOUR.SAMPLING.EFFORT), data = yourdata, family=poisson	(link 
= "log")) 
 
Here's how a reduced model (with no interactions) might look: 
 
model.glm <- glm(COUNT ~ DISTANCE.FROM.PATH + NEAR.WATER + 
LOGS.COUNT + MICROHABITAT + CANOPY.COVER + offset(SAMPLING.EFFORT), 
data = spider.counts, family=poisson(link = "log")) 
 
In principal, the method for working through the glm is very similar to an ANOVA. You 
need to think about the order of predictors, look for significant interactions and remove 
them, and avoid over-fitting your model with too many predictors. 
 
We've use an 'offset' variable to take into account differences in sampling effort, so that 
we don't have to do anything to the raw count (i.e. we don't need to generate a ratio of 
counts per unit of sample effort). You do need to check the assumptions of the model, 
and remember that glm assumptions are different to ANOVA assumptions. 
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Zero Inflated glms 
 
Another problem that can occur is if there are a lot of zeroes in the data. In this situation 
we would want to check the glm against what is called a 'zero inflated' glm. A zero 
inflated glm is specifically designed to cope with datasets that have a lot of zeroes. 
Unfortunately, there is no core zero inflated glm model, so we need to make use of a 
library: 
 
install.packages("pscl") 
library(pscl) 
 
The code is slightly different. The 'offset' variable is placed at the end, like so: 
 
zeromodel.glm <- zeroinfl(COUNT ~ DISTANCE.FROM.PATH + NEAR.WATER + 
LOGS.COUNT + MICROHABITAT + CANOPY.COVER, data = spider.counts, 
offset = SAMPLING.EFFORT) # zero inflated glm 
 
A Vuong Test can be used to compare the ordinary glm with the zero inflated glm. If 
there is a significant difference, then the zero inflated glm is better. 
 
model.glm <- glm(COUNT ~ DISTANCE.FROM.PATH + NEAR.WATER + 
LOGS.COUNT + MICROHABITAT + CANOPY.COVER + offset(SAMPLING.EFFORT), 
data = spider.counts, family=poisson(link = "log")) # standard glm 
	
vuong(zeromodel.glm, model.glm) 
 
Vuong Non-Nested Hypothesis Test-Statistic: 4.824468  
(test-statistic is asymptotically distributed N(0,1) under the 
 null that the models are indistinguishible) 
in this case: 
model1 > model2, with p-value 7.018877e-07 
 
In this case the P value is significant (P < 0.05), which indicates that model 1 (the zero 
inflated glm) is better than model 2 (the standard glm).	 	
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GLM: Binomial distribution 
 
You should now be able to run a binomial GLM (using a binary response variable). The 
steps are the same as for a GLM using a poisson distribution, except that the family 
distribution is set to binomial(link = "logit") and if you need to resort to it, the 
quasi distribution family is quasibinomial(link = "logit"). 
 

Using a binary response variable: 
 
Import the data yellowrobin.csv data set. 
robin <- read.table('yellowrobin.csv',header=T,sep=',') 
 
Check the data 
str(robin) 
 
This data shows presence (= 1) and absence (= 0) for Eastern Yellow Robins in 
southeastern Victoria. The predicator variables are ordinal habitat scores (0 = none, 5 = 
heavy) and the size of the forest path in hectares (ha). 
 
robin <- read.table('yellowrobin.csv',header=T,sep=',') 
str(robin) 
 
attach(robin) # A quick way to look at multiple correlations 
round(cor(robin[,4:7]),2) # correlation grid: columns 4-7 
 
robin.glm <- glm(Pr.Ab ~ 
AREA.ha*LEAF.LITTER*SHRUBS*CANOPY*WOODY.DEBRIS, family = 
binomial(link="logit"), data = robin) 
summary(robin.glm) 
 
You will receive an error message at this point. The model is overparamtised and cannot 
be build (too many predictors, not enough observations). If we were going to publish this 
we would procede to check interactions in a careful, interaction-by-interaction approach, 
but for the sake of moving along we will just remove the interaction terms for now. This 
will drastically reduce the number of predictor terms in the model. 
 
robin.glm <- glm(Pr.Ab ~ 
AREA.ha+LEAF.LITTER+SHRUBS+CANOPY+WOODY.DEBRIS, family = 
binomial(link="logit"), data = robin) 
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Now check assumptions. 
 

1) Has over-dispersion occurred? 
summary(robin.glm) # just looking at the dispersion part of the 
output 
 

 
 
95.806 is less than 114, so overdispersion has not occurred. 
 

2) How do the diagnostic plots look? 
 
par(mfrow=c(2,2)) 
plot(robin.glm) 
 

 
 
These plots look okay, considering we are working with binary data. There is no 
obvious 'wedge' in the Residuals vs Fitted and the QQ looks fine (i.e. the dots are more 
or less on the line). 
  

RESULT 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 166.222  on 119  degrees of freedom 
Residual deviance:  95.806  on 114  degrees of freedom 
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3) Is mean:var approximately 1:1? 
 
attach(robin) # just looking at the man and variance by one 
category. We could check all the predictors if unsure about this 
one. 
tapply(Pr.Ab,SHRUBS,mean) 
tapply(Pr.Ab,SHRUBS,var) 
 

 
 
These look more or less proportional. They are not exactly 1:1, but they are probably 
close enough to be okay. 
 
robin.glm <- glm(Pr.Ab ~ 
AREA.ha+LEAF.LITTER+SHRUBS+CANOPY+WOODY.DEBRIS, family = 
binomial(link="logit"), data = robin) 
 
summary(robin.glm) 
 
 
 
 
	  

RESULT 
 
> tapply(Pr.Ab,SHRUBS,mean) 
        0         1         2         3         4         5  
0.7428571 0.5000000 0.3000000 0.4074074 0.2142857 0.3333333  
 
> tapply(Pr.Ab,SHRUBS,var) 
        0         1         2         3         4         5  
0.1966387 0.2619048 0.2333333 0.2507123 0.1813187 0.2424242 
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Interpretation 
Which explanatory variables were significantly associated with Yellow Eastern Robin 
presence or absence? 
 

	
 
Area of forest fragment and Shrubs appear to have a significant association with probability of 
robin presence. 
  

RESULT 
 
> summary(robin.glm) 
 
Call: 
glm(formula = Pr.Ab ~ AREA.ha + LEAF.LITTER + SHRUBS + CANOPY 
+  
    WOODY.DEBRIS, family = binomial(link = "logit"), data = 
robin) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-2.2363  -0.6343  -0.1487   0.5384   2.5379   
 
Coefficients: 
              Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -4.920642   1.403663  -3.506 0.000456 *** 
AREA.ha       0.014290   0.002854   5.007 5.54e-07 *** 
LEAF.LITTER   0.099062   0.177167   0.559 0.576064     
SHRUBS        0.528087   0.224560   2.352 0.018690 *   
CANOPY       -0.275388   0.208429  -1.321 0.186416     
WOODY.DEBRIS -0.096332   0.154887  -0.622 0.533973     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 
1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 166.222  on 119  degrees of freedom 
Residual deviance:  95.806  on 114  degrees of freedom 
AIC: 107.81 
 
Number of Fisher Scoring iterations: 5 
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For the Eastern Yellowbreasted robins, what is the probability of robins being present 
in a forest block of 100 ha with Leaf Litter  = 1, Shrubs = 2, Canopy = 1 and Woody 
Debris = 3? 
 
You can use the same method we used above for a Poisson model, except note that 
because we ned to reverse a logistic regression, we need an inverse logit function, not 
an exponent. 
 
??inv.logit 
 
It trurns out that inv.logit is in the boot library. 
 
library(boot) 
inv.logit(Intercept + multiplier*X + multiplier*Y + multiplier*Z) 
 
Now	we'll	have	a	go	at	working	out	the	probability	of	robins	being	present	in	a	forest	block	
of	200	ha	with	Leaf	Litter		=	0,	Shrubs	=	5,	Canopy	=	4	and	Woody	Debris	=	4.	The	values	
come	from	the	estimates	on	the	previous	page.	
	
inv.logit(-4.920642 + 200 * 0.014290 + 0 * 0.099062 + 5 * 0.528087 + 
4 * -0.275388 + 4 * -0.096332) 
	
	

	
 
Given the above conditions, our model is predicting a 28.7% chance of robin presence 
in a forest block. 
 

RESULT 
 
> inv.logit(-4.920642 + 200 * 0.014290 + 0 * 0.099062 + 5 * 
0.528087 + 4 * -0.275388 + 4 * -0.096332) 
 
[1] 0.2871867 
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Graphing 
There	are	several	options	for	graphing	binary	data	against	a	continuous	predictor.	Three	
that	you	might	find	useful	are	the	conditional	density	plot,	the	spline	plot	and	a	proportion	
plot.	First	both	your	response	needs	to	be	afactor:	
	
dataset$your.response <- as.factor(dataset$your.response) 
	

Conditional Density Plot 
cdplot(your.response ~ your.predictor, data = your.data)  
 

Spline Plot 
spineplot(your.response ~ your.predictor, data = your.data) 
 
Usually	we	would	only	plot	the	significant	relationships.	We	will	plot	the	relationship	with	
area	of	forest	fragment	in	ha.	
	
robin$Pr.Ab <- as.factor(robin$Pr.Ab) 
 
# Conditional density plot 
cdplot(Pr.Ab ~ AREA.ha, data = robin) 
 
# Spine plot 
spineplot(Pr.Ab ~ AREA.ha, data = robin) 
 
 

 
 
You wouldn't typically report both plots, rather you'd tend to pick the one that you 
think shows the relationship most clearly. In both cases the dark section represents 
proportion of forest fragments where robins where absent. This decreases as the area 
of the forest gets larger. 
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Mixed Effect Models 
Mixed effect models have become very popular in biology. We're only going to look at 
them briefly because they can become quite complicated and we don't want to get 
bogged down in too many details at this point. 
 
A mixed effect model contains two types of explanatory variables. These are fixed effects 
and random effects. The difference between these variables is that: 
 

• Fixed effects: Influence only the mean of the response variable (y) 
• Random effects: Influence only the variance of the response variable (y) 

 
Biologists can get into elaborate debates about whether a variable should be a fixed or 
random effect when entered into a model. As a very rough rule of thumb usually (but not 
always) the fixed effects are the explanatory variables of interest, whereas the random 
effects are the factors that you want to control for to avoid pseudoreplication (random 
effects are always factors, whereas fixed effects can be continuous variables, counts, 
binary data or factors). If you dig into this deeper, you will actually find many conflicting 
definitions. Here are a few collated by Andrew Gelman (Analysis of variance—why it is 
more important than ever (2005) Annals of Statistics): 
 
(1) Fixed effects are constant across individuals, and random effects vary. For example, in a 
growth study, a model with random intercepts a_i and fixed slope b corresponds to parallel lines 
for different individuals i, or the model y_it = a_i + b t. Kreft and De Leeuw (1998) thus distinguish 
between fixed and random coefficients. 
 
(2) Effects are fixed if they are interesting in themselves or random if there is interest in the 
underlying population. Searle, Casella, and McCulloch (1992, Section 1.4) explore this distinction 
in depth. 
 
(3) “When a sample exhausts the population, the corresponding variable is fixed; when the 
sample is a small (i.e., negligible) part of the population the corresponding variable is random.” 
(Green and Tukey, 1960) 
 
(4) “If an effect is assumed to be a realized value of a random variable, it is called a random 
effect.” (LaMotte, 1983) 
 
(5) Fixed effects are estimated using least squares (or, more generally, maximum likelihood) and 
random effects are estimated with shrinkage (“linear unbiased prediction” in the terminology of 
Robinson, 1991). This definition is standard in the multilevel modeling literature (see, for 
example, Snijders and Bosker, 1999, Section 4.2) and in econometrics. 
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The problem is that these various definitions conflict, sometimes wildly. However, from 
a pragmatic point of view, the important thing is that a random effect is (1) a factor (i.e. 
not a covariate) that is taken into account in a model (2) before the fixed effects are 
examined. This means that if most of the variance in a model can be explained by a fixed 
effect (animal ID, plot, site, year), then that variance is removed before the fixed effects 
get a chance to explain anything. This effectively controls for pseudoreplication. In effect, 
we are trying to control for 'groups' with shared properties. For our purposes, a group is 
any set of individuals that share some sort of common property. 

• Multiple observations of an animal 
• Multiple animals from a site 
• Multiple sites within a landscape 
• Multiple landscapes within a climactic range 

 
Any categorical (factorial) variable can potentially be a group. 
 
To understand how we use mixed effects in models, the best thing is probably to work 
through an example. To do this open the agilis-morphometrics.csv data set. This is a cut-
down version of a PhD dataset (the actual data set is much larger). Individual agile 
antechinus have been captured at study sites that are either forest fragments or 
undisturbed continuous forest sites (this is a comparative control). The problem however, 
is that we have multiple individuals from each site, and there were two trapping grids 
per site, and it looks like we might want to control for the sampling year as well. 
 
We could control for these things (site, trapping grid and year) by averaging all of the 
values by these factors, but a lot of information is going to be lost if we do that. 
 
It would be better to include that information in a model. We're going to have a go at a 
simple linear mixed effect model and then we'll attempt a generalised mixed effect 
model. 
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Linear mixed effects models 
The assumptions for a linear mixed effect model are the same as for a linear model or 
ANOVA: 
 

ASSUMPTIONS OF LME MODEL 
(1) Residuals are normally distributed 
(2) Residuals must be independent (collected randomly) 
(3) Residuals have equal variances 

 
PROBLEMS MAY OCCUR IF… 
(1) Predictor variables correlate 

(two variables explain the same thing) 
(2) The model is over-parameterised 

(too many predictors given your data set size) 
(3) Covariates are bounded or not normally distributed 

 
In linear mixed effect models order is important! 

 
The assumptions for a generalised linear mixed effect model are the same as for a 
generalised linear model: 
 

ASSUMPTIONS OF GLMME MODEL 
(1) Observations are independent (collected randomly) 
(2) Correct link function is used 
 Residuals must fit the nominated error distribution 
 Overdispersion should not occur 

 

PROBLEMS CAN OCCUR IF… 
(1) Predictor variables are correlated 
(2) Model is over-parameterised 
(3) Covariates are bounded or not normally distributed 

 
Notice how the 'problems' are the same for both lme and glmme. The problems (which 
are not absolute assumptions, but which can cause models to be less accurate, or fail to 
even work) are typical of a lot of models. Often, it is a good idea to check your predictor 
variables for correlation at the outset regardless of what approach you are going to take. 
If nothing else, you'll want to know whether it might be present in the data because 
sometimes correlation is itself interesting to examine. 
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Linear mixed effect model example 
 
There is a strong preference in the published literature for using the package lme4 for 
linear mixed effects models over nlme. I'll discuss key differences below. The nlme 
package is easier to learn from the start with, though, and we will use it as a starting 
point. 
 
Load the necessary library: 
library(nlme) # remember to install if not already installed 
 
Import the data set, check it and remove missing values: 
agilis <- read.table('agilis-morphometrics.csv',header=T,sep=',') 
agilis <- na.omit(agilis) 
str(agilis) 
	
agilis.lme <- lme(MASS ~ MONTH + SEX * HABITAT, random = ~1|	
YEAR/SITE/TRAP.GRID, method="REML", data = agilis) 
	
MASS The response variable	
MONTH + SEX * HABITAT The fixed effects.	
	 MONTH is a covariate.	
	 SEX and	HABITAT are factors	
	YEAR/SITE/TRAP.GRID	 The random effects	

	 TRAP.GRID is nested inside	SITE which is nested 
inside	YEAR	

method="REML"	 Instruction to use	REML not	ML	
	 REML is better for accuracy (especially of P values)	
	 ML is necessary for model selection 
data = agilis	 The data	
	
	
plot(agilis.lme) # look at the residual plot (equal variances) 
library(car)	
qqPlot(resid(agilis.lme)) # look at the QQ plot (normality)	
	
summary(agilis.lme) 
anova(agilis.lme)	
 
Both of these options provide P values. The anova option is simpler and often easier for 
you to interpret. Here are some extra things you can pull out of the model: 
 
(cor(fitted(agilis.lme),getResponse(agilis.lme))^2) # R2 for the 
model 
 
AIC(agilis.lme) # An AIC for the model 
 
VarCorr(agilis.lme) # The percentage of variance explained for the 
random effects	  
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Presenting the LME results 
You wouldn't want to present the whole output of the model in a research paper. The 
most important parts are shown in red. 
 
 
> summary(agilis.lme) 
Linear mixed-effects model fit by REML 
 Data: agilis  
       AIC      BIC   logLik 
  1037.378 1066.881 -509.689 
 
Random effects: 
 Formula: ~1 | YEAR 
        (Intercept) 
StdDev:   0.1149765 
 
 Formula: ~1 | SITE %in% YEAR 
        (Intercept) 
StdDev:    2.833205 
 
 Formula: ~1 | TRAP.GRID %in% SITE %in% YEAR 
         (Intercept) Residual 
StdDev: 0.0006117597 2.409616 
 
Fixed effects: MASS ~ MONTH + SEX * HABITAT  
                     Value Std.Error DF   t-value p-value 
(Intercept)      14.238141 1.7873446 81  7.966086  0.0000 
MONTH             0.423502 0.2924507 56  1.448113  0.1532 
SEXM              6.049804 0.4890037 81 12.371694  0.0000 
HABITATFRAG       0.128548 0.9001976 56  0.142800  0.8870 
SEXM:HABITATFRAG  2.388402 0.7072864 81  3.376853  0.0011 
 Correlation:  
                 (Intr) MONTH  SEXM   HABITA 
MONTH            -0.934                      
SEXM             -0.161  0.006               
HABITATFRAG      -0.255  0.005  0.308        
SEXM:HABITATFRAG  0.110 -0.003 -0.691 -0.431 
 
Standardized Within-Group Residuals: 
        Min          Q1         Med          Q3         Max  
-2.05428158 -0.58097493 -0.04721096  0.51659196  2.63548661  
 
Number of Observations: 201 
Number of Groups:  
                         YEAR                SITE %in% YEAR TRAP.GRID %in% SITE 
%in% YEAR  
                            2                            60            118 

Both of these options provide slightly different reporting choices. You don’t always need 
to report the significance for the intercept because it isn’t surprising that the line is not 
passing through zero. For the summary(model.lme) option the Value is an effect 
size and the Std.Error is the Standard Error of the effect size. The direction of effect 
is indicated in the left-hand column. 
 
So, for example, SEXM means that there was a positive 6.05 g trend towards males being 
heavier than females. The standard error of this was ±0.48. Because the standard error 
does not overlap with zero the effect is significant. That is, the error also tells us whether 
the effect is significantly different from zero. 
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The anova(model.lme) option is much simpler and doesn’t have effect sizes built in. 
report everything in red: The numDF is the numerator degrees of freedom and the denDF 
is the denominator degrees of freedom, as per an ANOVA. Also, because out predictors 
are factors (not numeric), the anova option might be generating more sensible results . 
 
 
> anova(agilis.lme) 
            numDF denDF   F-value p-value 
(Intercept)     1    81 2490.2066  <.0001 
MONTH           1    56    1.8089  0.1841 
SEX             1    81  413.3465  <.0001 
HABITAT         1    56    3.1368  0.0820 
SEX:HABITAT     1    81   11.4031  0.0011 

 
The other important bit of the model is how much variance was explained by the 
random effects and how much was explained by the residuals (the fixed effects + 
unexplained variance that is left over). The best way to present this is as a percentage 
of total variance explained: 
 
> VarCorr(agilis.lme) 
            Variance     StdDev       
YEAR =      pdLogChol(1)              
(Intercept) 1.321959e-02 0.1149764591 
SITE =      pdLogChol(1)              
(Intercept) 8.027053e+00 2.8332053471 
TRAP.GRID = pdLogChol(1)              
(Intercept) 3.742499e-07 0.0006117597 
Residual    5.806251e+00 2.4096164438 

	
 
YEAR 0.013127 0.013127 / 13.8  =  0.10% 
SITE 8.027108 8.027108 / 13.8  =  58.17% 
TRAP.GRID 0.000000 0.000000 / 13.8  =  0.00% 
Residual 5.806250 5.806250 / 13.8  =  42.07% 
SUM 13.8    

 
The Random Effects are taken into account first and then after these have been used to 
explain variation in the response variable, the leftover variance (called the 'residual 
variance') is used for the Fixed Effects. This is how the Random Effects control for the 
Fixed Effects. If it turns out that actually Year, Site and Trap Grid explain all the variation 
in the data then there will be no variation left over for the Fixed Effects to explain. 
 
In this case, the Random Effects are explaining in total about 60% of the variation in the 
response variable (mass of agile antechinus). This leaves about 40% for the Fixed Effects. 
 
There is some code on the next page that does the same thing in R. 
	 	



	
	

168	

agilis.var <- VarCorr(agilis.lme) 
agilis.var # look at the variances 
 
YEAR <- as.numeric(agilis.var[2]) # grab the variance for year 
SITE <-  as.numeric(agilis.var[4]) # grab the variance for site 
TRAP.GRID <-  as.numeric(agilis.var[6]) # for trapping grid 
RESIDUALS <-  as.numeric(agilis.var[7]) # grab the unexplained 
variance that will be passed to the fixed effects 
 
YEAR;SITE;TRAP.GRID;RESIDUALS # check the numbers 
TOTAL.VARIANCE <- YEAR+SITE+TRAP.GRID+RESIDUALS # sum them 
 
YEAR/TOTAL.VARIANCE # calculate proportion 
SITE/TOTAL.VARIANCE # calculate proportion 
TRAP.GRID/TOTAL.VARIANCE # calculate proportion 
RESIDUALS/TOTAL.VARIANCE # calculate proportion 
	

	

RESULT 
 
> agilis.var <- (VarCorr(agilis.lme)) 
> agilis.var 
 
            Variance     StdDev       
YEAR =      pdLogChol(1)              
(Intercept) 1.321958e-02 0.1149764269 
SITE =      pdLogChol(1)              
(Intercept) 8.027053e+00 2.8332053467 
TRAP.GRID = pdLogChol(1)              
(Intercept) 3.744421e-07 0.0006119168 
Residual    5.806251e+00 2.4096164440 
 
> YEAR <- as.numeric(agilis.var[2]) 
> SITE <-  as.numeric(agilis.var[4]) 
> TRAP.GRID <-  as.numeric(agilis.var[6]) 
> RESIDUALS <-  as.numeric(agilis.var[7]) 
 
> YEAR;SITE;TRAP.GRID;RESIDUALS 
[1] 0.01321958 
[1] 8.027053 
[1] 3.744421e-07 
[1] 5.806251 
 
> TOTAL.VARIANCE <- YEAR+SITE+TRAP.GRID+RESIDUALS 
 
> YEAR/TOTAL.VARIANCE 
[1] 0.0009547219 
> SITE/TOTAL.VARIANCE 
[1] 0.5797161 
> TRAP.GRID/TOTAL.VARIANCE 
[1] 2.704232e-08 
> RESIDUALS/TOTAL.VARIANCE 
[1] 0.4193291 
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Table 1. Example of how to present linear mixed effect model results. Note that because there is a 
significant interaction of SEX x HABITAT, the next step would be to split the data by SEX and re-run 
the analyses to check what the effect of habitat is on the two sexes. The significant interaction term (as 
with regression analyses, ANOVAs) renders the main effects of SEX and HABITAT uninterpretable as 
they stand. Some unravelling of the complex relationship is required. 
 

Fixed Effects DF (num, dem)  F P 
Intercept 1,81  2490.2 < 0.001 
MONTH 1,56  1.81 0.184 
SEX 1,81  413.3 < 0.001 
HABITAT 1,56  3.1 0.082 
SEX x HABITAT 1,81  11.4 0.001 
Random effects Percentage of variation explained 
YEAR 0.1%       
SITE 58.0 %    
TRAP GRID < 0.1%    
Residual 42.0%       

	
 
But what about AICs? What are they used for? An AIC is an information criterion used to 
pick the best model. This is a different approach to using P-values and you should 
probably not use AICs and P values in the same analysis. 
 
AICs use a statistic called Deviance that is something like an R2 to work out which model 
best explains the data. The AIC then penalises models with too many predictors. If you 
have 20 predictors and 20 data points you will have a perfect model, but it is also not 
very useful because each data point is explained by one predictor. Instead what you want 
is the most parsimonious model: the model that explains the most variation in the data 
whilst using the fewest predictors. 
 
Instead of trying to find which predictors are significant, AICs are used to decide which 
model best explains the variation in the response (i.e. which predictors to include and 
which to leave out) given the number of predictors used. Try the following and see what 
happens. Note that we have switch REML to ML because we want to compare models now 
instead of obtain P values… 
 
agilis.lme <- lme(MASS ~ MONTH + SEX * HABITAT, random = ~1|	
YEAR/SITE/TRAP.GRID, method="ML", data = agilis) 
 
install.packages("MuMIn") 
library(MuMIn) 
 
dredge(agilis.lme) 
 
We won't get into this in detail here. If you are interested in AICs have a look at the 
Appendix at the model selection chapter.		 	
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nlme  and lme4 
If you hunt around on the various R groups you’ll find that most of the stats gurus advise 
in favour of using lme4 instead of nlme for linear mixed effect models. The package lme4 
does have more accurate algorithms, but the difference is marginal and for our purposes 
the nlme package is easier to use. However, to run the same model using lme4 you would 
use this code: 
 
install.packages("lme4") 
library(lme4) 
 
agilis <- read.table('agilis-morphometrics.csv',header=T,sep=',') 
agilis <- na.omit(agilis) # remove missing observations 
str(agilis) 
	
agilis.lmer <- lmer(MASS ~ MONTH + SEX * HABITAT + 
(1|	YEAR/SITE/TRAP.GRID), REML = TRUE, data = agilis) 
 
summary(agilis.lmer) # Note: there are no P-values! 
anova(agilis.lmer) # Note: there are no P-values! 
 
The author who manages lme4 feels that there isn't an accurate way to calculate P 
values for linear mixed effects models. This may well be true, but unless your P values 
are marginal (in which case you should be cautious with your interpretation anyway), and 
as long as you are looking at effect sizes as well, and thinking about biological 
meaningfulness, slightly inaccurate P values are not going to make or break your work. 
We will use a method out of another package, lmerTest. 
 
install.packages("lmerTest") 
library(lmerTest) 
 
agilis.lmer <- lmer(MASS ~ MONTH + SEX * HABITAT + 
(1| YEAR/SITE/TRAP.GRID), REML = TRUE, data = agilis) # Rebuild 
model after having loaded the new library 
 
summary(agilis.lmer) 
anova(agilis.lmer) 
	
Results	 are	on	 the	next	page.	 If	 you	 compare	 the	output,	 the	lme4	model	 has	produced	
largely	similar	results	except	that	Habitat	based	on	nlme	was	marginally	non-significant	(P	=	
0.08),	 whereas	 for	 lme4	 it	 is	 not	 significant	 (P	 =	 0.005).	 Given	 that	 the	 interaction	 term	
SEX:HABITAT	 is	 also	 significant,	 the	 main	 effects	 for	 SEX	 and	 HABITAT	 are	 not	
interpretable	out	of	this	model	anyway,	so	the	difference	is	a	bit	moot.	
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RESULT 
 
summary(agilis.lmer) 
 
Linear mixed model fit by REML. t-tests use Satterthwaite's method 
['lmerModLmerTest'] 
Formula: MASS ~ MONTH + SEX * HABITAT + (1 | YEAR/SITE/TRAP.GRID) 
   Data: agilis 
 
REML criterion at convergence: 1019.4 
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-2.0543 -0.5810 -0.0472  0.5166  2.6355  
 
Random effects: 
 Groups                Name        Variance Std.Dev. 
 TRAP.GRID:(SITE:YEAR) (Intercept) 0.00000  0.0000   
 SITE:YEAR             (Intercept) 8.02711  2.8332   
 YEAR                  (Intercept) 0.01313  0.1146   
 Residual                          5.80625  2.4096   
Number of obs: 201, groups:  TRAP.GRID:(SITE:YEAR), 118; SITE:YEAR, 
60; YEAR, 2 
 
Fixed effects: 
                Estimate Std. Error       df t value Pr(>|t|)     
(Intercept)      20.2880     1.7756  52.6347  11.426 7.17e-16 *** 
MONTH             0.4235     0.2925  52.3926   1.448 0.153546     
SEX              -6.0498     0.4890 140.7775 -12.372  < 2e-16 *** 
HABITATFRAG       2.5170     0.8728  68.6208   2.884 0.005245 **  
SEX:HABITATFRAG  -2.3884     0.7073 142.4323  -3.377 0.000945 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Correlation of Fixed Effects: 
            (Intr) MONTH  SEX    HABITA 
MONTH       -0.938                      
SEX         -0.114 -0.006               
HABITATFRAG -0.241  0.002  0.243        
SEX:HABITAT  0.079  0.003 -0.691 -0.366 
 
anova(agilis.lmer) 
Type III Analysis of Variance Table with Satterthwaite's method 
             Sum Sq Mean Sq NumDF   DenDF  F value    Pr(>F)     
MONTH         12.18   12.18     1  52.393   2.0970 0.1535457     
SEX         2436.29 2436.29     1 142.533 419.5976 < 2.2e-16 *** 
HABITAT       48.28   48.28     1  68.621   8.3159 0.0052451 **  
SEX:HABITAT   66.21   66.21     1 142.432  11.4032 0.0009454 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Generalised linear mixed effect model 
 
A generalised linear mixed effects model is simply an extension of the GLM we looked 
at earlier, but allowing for one or more random effects. Here's the code for a 
generalised linear mixed effect model (GLMM) using the lmer package. We'll examine 
whether there are differences in exoparasite counts (EXO) for agile antechinus using 
the same factors and covariates as above. 
agilis <- read.table('agilis-morphometrics.csv',header=T,sep=',') 
agilis <- na.omit(agilis) # remove missing observations 
str(agilis) 
 
Is the response variable a count of whole numbers? 
is.integer(agilis$EXO) 
	
Load	the	necessary	library:	
library(lme4) 
	
agilis.glmer <- glmer(EXO ~ SEX * HABITAT + MONTH + (1 | 
YEAR/SITE/TRAP.GRID), family = poisson(link = "log"), REML = 
TRUE, agilis) 
 
Look at a plot of the model to check assumptions. Only one plot is generated, the 
residuals vs fitted plot. We want to see a roughly evenly distributed cloud of data with 
no wedge in it. The following looks all right. 
 

 
 
 
summary(agilis.glmer) # preferable if most of your predictors 
are numeric 
anova(agilis.glmer) # preferable if most of your predictors 
are factorial 
 
Previously we had difficulty extracted P values from a linear mixed effect model (lmer) 
(which is a mixed effect variant of an ANOVA-like model (see above), and is a test that 
relies on variance). However generalised linear models are not tests of variance, they are 
tests of deviance. 
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The author of the lme4 package thinks that obtaining P values from mixed effects 
GLMS is valid, and they have provided P-values for these GLMM models. This means we 
don't have to do the extra step of extracting P-values using another library. 
 

 
 

RESULT 
 
summary(agilis.glmer) 
Generalized linear mixed model fit by maximum likelihood (Laplace 
Approximation) ['glmerMod'] 
 Family: poisson  ( log ) 
Formula: EXO ~ SEX * HABITAT + MONTH + (1 | YEAR/SITE/TRAP.GRID) 
   Data: agilis 
 
     AIC      BIC   logLik deviance df.resid  
   739.9    766.3   -361.9    723.9      193  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-2.2317 -0.6562 -0.3891  0.3737  2.5118  
 
Random effects: 
 Groups                Name        Variance Std.Dev. 
 TRAP.GRID:(SITE:YEAR) (Intercept) 0.2459   0.4959   
 SITE:YEAR             (Intercept) 1.7666   1.3291   
 YEAR                  (Intercept) 0.0000   0.0000   
Number of obs: 201, groups:  TRAP.GRID:(SITE:YEAR), 118; SITE:YEAR, 
60; YEAR, 2 
 
Fixed effects: 
                Estimate Std. Error z value Pr(>|z|)    
(Intercept)     -0.52102    0.88331  -0.590   0.5553    
SEX              0.16237    0.17603   0.922   0.3563    
HABITATFRAG      1.25766    0.41083   3.061   0.0022 ** 
MONTH           -0.04061    0.14416  -0.282   0.7782    
SEX:HABITATFRAG -0.15848    0.19944  -0.795   0.4268    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Correlation of Fixed Effects: 
            (Intr) SEX    HABITA MONTH  
SEX         -0.088                      
HABITATFRAG -0.278  0.199               
MONTH       -0.936 -0.003  0.020        
SEX:HABITAT  0.077 -0.882 -0.227  0.004 
 
anova(agilis.glmer) 
Analysis of Variance Table 
            Df Sum Sq Mean Sq F value 
SEX          1 0.2194  0.2194  0.2194 
HABITAT      1 8.9309  8.9309  8.9309 
MONTH        1 0.0783  0.0783  0.0783 
SEX:HABITAT  1 0.6237  0.6237  0.6237 
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What happens if you try to get P-values from this formula? 
 
agilis.glmer <- glmer(MASS ~ SEX * HABITAT + MONTH + (1 | 
YEAR/SITE/TRAP.GRID), family = gaussian(link = "identity"), 
REML = TRUE, agilis) 
 
summary(agilis.glmer) 
	

	
	
So, what we've done here is used a GLMM to test for a relationship expecting normally 
distributed residuals of a model, which is defined using the code family = 
gaussian(link = "identity"). 
 
This is the same situation as previously, where the lme4 author does not think it is 
straightforward to calculate P values for linear models with mixed effects, so that what 
might appear to be a sneaky backdoor way of getting P values (running a GLMM with a 
normal distribution instead) has also had the P values intentionally omitted. 
	

RESULT 
 
summary(agilis.glmer) 
Fixed effects: 
                Estimate Std. Error t value 
(Intercept)      20.2880     1.7756  11.426 
SEX              -6.0498     0.4890 -12.372 
HABITATFRAG       2.5170     0.8728   2.884 
MONTH             0.4235     0.2925   1.448 
SEX:HABITATFRAG  -2.3884     0.7073  -3.377 
 
 
anova(agilis.glmer) 
Analysis of Variance Table 
            Df  Sum Sq Mean Sq  F value 
SEX          1 2398.24 2398.24 413.0450 
HABITAT      1   18.11   18.11   3.1184 
MONTH        1   12.36   12.36   2.1289 
SEX:HABITAT  1   66.21   66.21  11.4032 
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Applying a Tukey's test to a mixed effect model 
 
Best to use the glht function in library multcomp: 
library(multcomp) 
	
Make	sure	your	dataset	is	attached!	
attach(your.data) 
	
Make sure your 'factor' of interest is actually a factor in R 
your.data$your.factor <- as.factor(your.data$your.factor) 
	
Apply a Tukey test to the model 
fit.glht <- glht(your.lme,linfct=mcp(YOUR.FACTOR="Tukey")) 
	
plot(fit.glht) # plot of confidence intervals of differences. 
These plots are usually not reported in a paper. 
summary(fit.glht) # Tukey's contrasts 
cld(fit.glht) # alphabet soup 
	
Factorial interactions 
If the lme or glmr has an interaction in it you need to include an interaction average: 
	
fit.glht <- glht(your.lme,linfct=mcp(YOUR.FACTOR="Tukey",	
interaction_average=TRUE)) 
	
plot(fit.glht) 
summary(fit.glht) 
	
Covariate interactions 
If the lme or glmr has an interaction in it involving a covariate you need to include an 
interaction average: 
 
fit.glht <- glht(your.lme,linfct=mcp(YOUR.FACTOR="Tukey",	
covariate_average=TRUE)) 
	
plot(fit.glht) 
summary(fit.glht) 
 
Try applying a Tukey's test to the agilis linear model for mass we created above. Here is 
the code for the model again to save you scrolling up: 
 
agilis.lme <- lmer(MASS ~ MONTH + SEX * HABITAT + (1 |	
YEAR/SITE/TRAP.GRID), REML = TRUE, data = agilis) 
 
Make sure that Month is a factor (use	str(agilis) if unsure) and attach your dataset. 
Results you should see are on the next page:	
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RESULT 
 
library(multcomp) 
agilis$MONTH <- as.factor(agilis$MONTH) 
agilis.lme <- lmer(MASS ~ MONTH + SEX * HABITAT + (1 | 
YEAR/SITE/TRAP.GRID), REML = TRUE, data = agilis) 
 
attach(agilis) 
agilis.glht <- glht(agilis.lme,linfct=mcp(MONTH="Tukey")) 
 
summary(agilis.glht) 
 
  Simultaneous Tests for General Linear Hypotheses 
 
Multiple Comparisons of Means: Tukey Contrasts 
 
 
Fit: lmer(formula = MASS ~ MONTH + SEX * HABITAT + (1 | 
YEAR/SITE/TRAP.GRID),  
    data = agilis, REML = TRUE) 
 
Linear Hypotheses: 
           Estimate Std. Error z value Pr(>|z|) 
4 - 3 == 0  -2.7063     1.9472  -1.390    0.725 
5 - 3 == 0  -1.7484     1.7719  -0.987    0.919 
6 - 3 == 0  -1.1944     1.8373  -0.650    0.986 
7 - 3 == 0  -0.7579     1.7964  -0.422    0.998 
8 - 3 == 0   0.8455     2.0638   0.410    0.998 
5 - 4 == 0   0.9578     1.3747   0.697    0.982 
6 - 4 == 0   1.5118     1.4573   1.037    0.902 
7 - 4 == 0   1.9484     1.4050   1.387    0.727 
8 - 4 == 0   3.5518     1.7348   2.047    0.306 
6 - 5 == 0   0.5540     1.2136   0.456    0.997 
7 - 5 == 0   0.9905     1.1507   0.861    0.954 
8 - 5 == 0   2.5939     1.5349   1.690    0.528 
7 - 6 == 0   0.4366     1.2489   0.350    0.999 
8 - 6 == 0   2.0399     1.6101   1.267    0.796 
8 - 7 == 0   1.6034     1.5636   1.025    0.906 
(Adjusted p values reported -- single-step method) 
 
cld(agilis.glht) # alphabet soup 
  3   4   5   6   7   8  
"a" "a" "a" "a" "a" "a" 
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Advanced Graphics 
Graphically speaking, there's a lot of things you can play around with in R, and once you 
know what you are doing R will produce some really beautiful graphics for you. We'll get 
into a bit of a taster of some of these features. A lot of this chapter is adapted from R in 
Action by Robert I Kabacoff, which is an excellent source for information on how to 
produce attractive graphs and figures in R.  
 

par 
The 'par' command is used to reset the global settings for figures. We've been using it to 
reset plot spaces to 2x2 instead of the usual 1x1 setting. It can be used to reset other 
things too, but before you change global settings you should save the default. Otherwise 
to restore the default you have to close R and re-open it again. 
 
View the current settings 
par() 
	
Save the current settings (can be an important step!) 
save.par <- par()  
	
Restore the saved settings 
par(save.par) 
 
To change a figure using the par settings you need to reset par before running the figure. 
We'll have a look at this on the next page. 
 
Import today's data: 
 
agilis <- read.table('agilis-
morphometrics.csv',header=T,sep=',') 
 
agilis <- na.omit(agilis) 
str(agilis) 
	
	

Aggressively restoring graphing defaults 
You can use the following code to aggressively restore plotting defaults, but, keep in 
mind this will erase all your previous plots as well. 
 
dev.off() 
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boxplot(MASS~SEX, data = agilis) 

	
 
Set the default line width to 2 
par(lwd = 2) 
	
boxplot(MASS~SEX, data = agilis) 

	
 
Because the par is now set to line width 2, all plots you create will have line width 2. If 
you want to reset this, restore the old par, like this: 
par(save.par) 
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What can be changed with par? 
	
Type ?par to see the list of parameters that can be altered. Here are some of the most 
common things you may want to change: 
 
	

Text size & font 
cex = Text size . 1=default. 1.5 = 50% larger. 0.5 = 50% smaller, etc.	
family =	 Font family to use.	"serif",	"sans",	"mono"	are most common.	
font = 1=plain. 2=bold. 3=italic. 4=bold italic.	
las = 	 Style of axis labels.  0 =  parallel to the axis [default]. 1 = always horizontal.  

2 = always perpendicular to the axis.  3 = always vertical.	
	

Point symbols 
pch =	 Use the following chart to see what points are available. For example,	

par(pch = 1) will provide hollow circles.	
	

	
 
Lines 
lwd =	 Line width. 1 = default. 2 = 2x thickness. 3 = 3x thickness. 
lty =	 Line type. 1 = solid. 2 through 6 are dashed.	
	

	 	



	
	

181	

Margins 
If labels or legends are cut-off, you can adjust margins of plotting areas. 
 
boxplot(WBC~YEAR+SEX+HABITAT,data=agilis) 

	
boxplot(WBC~YEAR+SEX+HABITAT,data=agilis, las=2) 

	
 
Change	the	bottom	margin	to	6	character	spaces	(making	it	bigger,	allowing	for	more	room).	
The	numbers	are	bottom,	left,	top	and	right.	
par(mar=c(10,4,2,2)) 
boxplot(WBC~YEAR+SEX+HABITAT,data=agilis, las=2) 
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Colours 
col = Default plotting colour. Some functions, such as lines, accept lists of 

colours that are 'recycled'	
col = c("grey", "white") Will start with grey, and cycle to white, grey, white, 

grey etc.	
col = c("darkgrey", "grey", "white") Will start with dark grey, then produce 

grey, and cycle to white, dark grey, grey, white, dark grey etc.	
	
Colours can be denoted using numbers or names or colour codes: 
par(save.par) ### some defaults won't reset. This is ok ### 
plot(Hb~Ht, data = agilis) 

	
par(pch = 16) 
par(col = "dimgrey") 
par(cex = 1.5) 
par(lwd = 2) 
plot(Hb~Ht, data = agilis) 
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When is it okay to use colour in a plot? 
There is still a tendency in science to avoid using colour in written reports. However, it 
is acceptable and sometimes desirable to use colour in a figure for a scientific poster or 
a seminar presentation, and colour in reports is becoming more acceptable. The most 
sensible thing is to check with your unit co-ordinator or lecturer, and if in doubt, just 
stick to greyscale figures for written papers. 

 

Adding directly to plots without using 'par' 
Most plots will accept par instructions added onto the end of their code. Each instruction 
is separated with a comma and the par command itself isn't required. This allows you 
to change features of a graph without changing the defaults. 
 
Restore defaults 
par(save.par) 

	
plot(MASS~NV, data = agilis) 
 
abline(lm(MASS~NV, data = agilis)) 
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plot(MASS~NV, data = agilis, pch = 16, col = "grey", cex.axis = 
1.25, cex.lab = 1.5) 

	
	

	
abline(lm(MASS~NV, data = agilis), lwd = 3) 
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Setting axes ranges 
You can use	xlim	and	ylim to adjust axis lengths.	

 
xlim=c(xmin, xmax) 
ylim=c(ymin, ymax) 
	 	
plot(MASS~NV, data = agilis, xlim=c(0, 150), ylim=c(0, 50)) 
	

	
 
 
plot(MASS~NV, data = agilis, xlim=c(50, 120), ylim=c(10, 45)) 
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Axis	labels	and	titles	
You can usually include instructions like	ylab	and	xlab	to apply labels and titles to a 
graph by adding them as code to the end of the plotting code. You can also apply title 
and axis labels after already making a graph, but if you do you need to set the graph 
labels to "" when you plot it or else you will end up with letters layered on top of one-
another.	
	
plot(MASS~NV, data = agilis, xlab = "", ylab = "") 
	

	
	
title(main="main title", sub="sub-title",  xlab="x-axis label", 
ylab="y-axis label") 
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Graphics: putting it all together 
Let's have a go at merging these all into a single graph. 
 
par(lwd=2) 
par(cex=2) 
 
plot(MASS~NV, data = agilis, pch = 16, col = "grey", xlab = 
"", ylab = "", cex=0.75) 
 
abline(lm(MASS~NV, data = agilis), lwd = 3) 
 
title(main="Agile antechinus", xlab="Nose-vent length (mm)", 
ylab="Mass (g)") 
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Adding axis information 
It is possible to add other elements to a graph after building it. A rugplot can be added 
to the bottom of a graph. 
 
rug(agilis$NV, col="black", side = 1) 
 

	
	
rug(agilis$MASS, col="black", side = 2) 
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Play around with the plotting window to add boxplots to the axes of a scatterplot. 
Restore defaults you saved earlier 
par(save.par) 
 
Tell R to set the plot window to one large and two small plots 
par(fig=c(0,0.8,0,0.8), new=TRUE) 
 
Scatterplot 
plot(MASS~NV, data = agilis, pch = 16, col = "grey", xlab = 
"", ylab = "", cex=0.75) 
 
abline(lm(MASS~NV, data = agilis), lwd = 3) 
 
title(xlab="Nose-vent length (mm)", ylab="Mass (g)") 
 
Boxplot on y-axis 
par(fig=c(0,0.8,0.55,1), new=TRUE) 
boxplot(agilis$NV, horizontal=TRUE, axes=FALSE) 
 
Boxplot on x-axis 
par(fig=c(0.65,1,0,0.8),new=TRUE) 
boxplot(agilis$MASS, axes=FALSE) 
 
mtext("Scatterplot of agile antechinus nose-vent length and 
mass", side=3, outer=TRUE, line=-3) 

	
	



	
	

193	

Reordering categories on the axes for boxplots 
Sometimes we need to reorder the labels on a plot because the alphabetical order isn't 
sensible. You actually run a bit of code to reorder the factor itself, then re-run the graph. 
You can also re-arrange boxplot horizontal axis categories. Try generating a boxplot of 
MASS by month: 
 
boxplot(MASS~Month, las = 2, data=agilis) 

	
 
R defaults to arranging the categories alphabetically, which is not especially useful for 
months of the year. To get around this we'll need to tell R what order we want the 
months to fall into. Enter the variables in the order you want them to plot: 
 
agilis$Month<-factor(agilis$Month, c("Mar", "Apr", "May", 
"Jun", "Jul", "Aug")) 
 
boxplot(MASS~Month, las = 2, data=agilis) 
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Setting up plots in grids and adding letters 
Sometimes we want to present several individual plots as a single plot using letters a, b, 
c, d etc. We can set the rows and columns for the plotting window by using par. 
 
You may have to use the 'clear plots' button in your plot window to get some of these plots 

to work. Otherwise you might end up plotting on top of old plots. 
 
A normal plot space with one graph 
par(mfrow = c(1, 1)) 
 
plot(MASS~NV, data = agilis, pch = 16, col = "grey") 
 
A plot space that holds 4 graphs 
par(mfrow = c(2, 2)) 
 
plot(MASS~NV, data = agilis, pch = 16, col = "black") 
plot(MASS~NV, data = agilis, pch = 16, col = "darkgrey") 
plot(MASS~NV, data = agilis, pch = 16, col = "red") 
plot(MASS~NV, data = agilis, pch = 16, col = "lightgrey") 
 

 



	
	

195	

A plot space that holds three graphs in a column 
par(mfrow = c(3, 1)) 
 
plot(MASS~NV, data = agilis, pch = 16, col = "black") 
plot(MASS~NV, data = agilis, pch = 16, col = "darkgrey") 
plot(MASS~NV, data = agilis, pch = 16, col = "red") 
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Add letters to a plot 
Text can be added inside a plot using this code. 
 
text(X, Y, "what you want to write", cex = 1) 
 
The X and Y co-ordinates are in the units of the axes. 
 
par(mfrow = c(2, 1)) 
 
plot(MASS~NV, data = agilis, pch = 16, col = "grey") 
text(72, 35, "A", cex = 3) 
  
plot(MASS~NV, data = agilis, pch = 16, col = "black") 
text(72, 35, "B", cex = 3) 
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Text can be added above a plot using this code. 
mtext("text", side = 3, adj = 0) 
 
The X and Y co-ordinates are in the units of the axes. 
par(mfrow = c(2, 1)) 
 
plot(MASS~NV, data = agilis, pch = 16, col = "grey") 
mtext("A", side = 3, adj = 0, cex = 2, col = "black") 
 
plot(MASS~NV, data = agilis, pch = 16, col = "black") 
mtext("B", side = 3, adj = 0, cex = 2, col = "black") 
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The layout function can be used to generate a more unusual layout 
layout(matrix(c(1,1,2,3), 2, 2, byrow = TRUE)) 
 
plot(MASS~NV, data = agilis, pch = 16, col = "black") 
mtext("a", side = 3, adj = 0, cex = 1.5, col = "black") 
 
plot(MASS~NV, data = agilis, pch = 16, col = "darkgrey") 
mtext("b", side = 3, adj = 0, cex = 1.5, col = "black") 
 
plot(MASS~NV, data = agilis, pch = 16, col = "red") 
mtext("c", side = 3, adj = 0, cex = 1.5, col = "black") 
 

 
 
	

 
 



	
	

199	

Density plots 
Kernel density plots are an under-used form of plot. Kernal density estimation is a non-
parametric way to estimate the probability density function of a random variable. The 
mathematics is beyond the scope of this course, but density plots can be very effective 
ways to view a continuous variable. Frist reset your par. We'll creat ea histogram first for 
comparison. 
 
par(save.par) 
 
hist(agilis$MASS) 
	

	
	
plot(density(agilis$MASS)) 
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The library 'sm' has some nice additions to the density plot function. 
 
install.packages("sm") 
library(sm) 
 
sm.density(agilis$MASS, display="se", xlab="") 
	

	
	
title("Density plot of agile antechinus mass", xlab="Mass (g)") 
	

	
	
abline(v=median(agilis$MASS), lty=2, lwd = 3, col = "grey") 
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The above plot has a standard error and rugplot added to it. The rugplot is added by 
default. 
 
The sm library doesn't have a lot of plotting options built into it, so we need to change 
defaults before plotting if we want to alter aspects of the plot. 
 
par(lwd=2) 
par(cex=2) 
 
sm.density.compare(agilis$MASS, agilis$SEX, xlab = "Mass (g)") 

	
 
We might not like the colours or lines, so we can change those too. 
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sm.density.compare(agilis$MASS, agilis$SEX, xlab = "Mass 
(g)",col=c("grey","black"),lty=c(1,1)) 
 

	
 
In the above example we would need to state in the figure caption that grey = females 
and black = males. 
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Using ggplot2 
 
The ggplot2 library works slightly differently to other plotting syntaxes in R. Instead 
of adding commands with a bracket, ggplot2 adds commands using a plus (+) and 
including the new command with a bracket for any specific things you decide you want 
to set. Most of the following plots have been saved with a width of 400 pixels and a 
height of 400 pixels. 
 
install.packages("ggplot2") 
library(ggplot2) 
 
The basic plots you are likely to need have a similar structure for data, but the defining 
difference is the geometric 'add-on'. ggplot2 works by attaching these 'add-on' 
components to a piece of basic code. 
 
ggplot2 scatterplot 
ggplot(dataset, aes(x=xvar, y=yvar)) + geom_point() 
	
ggplot2 boxplot 
ggplot(dataset, aes(x=xvar, y=yvar)) + geom_boxplot() 
	
ggplot2 geometric dotplot 
ggplot(dataset, aes(x=xvar, y=yvar)) + geom_dotplot() 
	
ggplot2 violin plot 
ggplot(dataset, aes(x=xvar, y=yvar)) + geom_violin() 
	
ggplot2 density plot 
ggplot(dataset, aes(x=xvar, y=yvar)) + geom_density() 
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Basic scatterplot in ggplot2 
ggplot(dataset, aes(x=xvar, y=yvar)) + geom_point() 
 
ggplot(agilis, aes(y=MASS, x=NV)) + geom_point() 

	
Use hollow circles 
ggplot(agilis, aes(y=MASS, x=NV)) + geom_point(shape=1) 
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Add line of best fit 
ggplot(agilis, aes(y=MASS, x=NV)) + geom_point(shape=1) 
+ geom_smooth(method=lm, se=FALSE, col = "black") 

	
	

	
Add thick line of best fit 
ggplot(agilis, aes(y=MASS, x=NV)) + geom_point(shape=1) 
+ geom_smooth(method=lm, se=FALSE, col = "black", lwd = 2)	
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Add standard error (68.2%) confidence intervals 
ggplot(agilis, aes(y=MASS, x=NV)) + geom_point(shape=1) 
+ geom_smooth(method=lm, col = "black")	
	

	
	
Wrap the scatterplot by SEX (MF) 
ggplot(agilis, aes(y=MASS, x=NV)) + geom_point(shape=1) + 
geom_smooth(method=lm, col = "black") + facet_wrap(~MF)	
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Wrap the scatterplot by SEX and HABITAT 
ggplot(agilis, aes(y=MASS, x=NV)) + geom_point(shape=1) + 
geom_smooth(method=lm, col = "black") 
+ facet_wrap(HABITAT~MF)	
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Use a loess smoothed line instead of a straight line 
(appropriate for non-parametric correlations) 
ggplot(agilis, aes(y=MASS, x=NV)) + geom_point(shape=1) 
+ geom_smooth(method=loess, col = "black")	
 

 
 
Incidentally, this can be a good way to identify data-entry errors. The antechinus with a 
Nose-vent length of <60 mm is implausible for an adult. Something odd has happened 
there, and the data-point should probably be removed. 
 
Wrap the scatterplot by SEX (MF) and use a loess smoother 
ggplot(agilis, aes(y=MASS, x=NV)) + geom_point(shape=1) + 
geom_smooth(method=loess, col = "black") + facet_wrap(~MF)	
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Split scatterplot point shapes by SEX on the same plot 
ggplot(agilis, aes(y=MASS, x=NV, shape = MF)) + geom_point() 
 

 
 
Split scatterplot by SEX on the same plot & change the x and y labels 
ggplot(agilis, aes(y=MASS, x=NV, shape = MF, col = MF)) + 
geom_point(size=3) + geom_smooth(method=lm, col = "red") + 
xlab("Nose-vent length (mm)") + ylab("Mass (g)") 
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Remove background colour 
ggplot(agilis, aes(y=MASS, x=NV)) + geom_point(shape=1) + 
geom_smooth(method=lm, se=FALSE, col = "black")+ theme_bw() 

	
	
Remove background colour and grid 
ggplot(agilis, aes(y=MASS, x=NV)) + geom_point(shape=1) + 
geom_smooth(method=lm, se=FALSE, col = "black") + theme_bw() + 
theme(panel.grid.major = element_blank(), 
panel.grid.minor = element_blank()) 
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Basic boxplot in ggplot2 
 
Change month to a factor 
agilis$MONTH <- as.factor(agilis$MONTH) 
 
ggplot(agilis, aes(y=RBC, x=MONTH)) + geom_boxplot() 
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Add x and y labels & remove grey background 
ggplot(agilis, aes(y=RBC,x=MONTH)) + geom_boxplot() + 
xlab("Month") + ylab("Red blood cell count (cells/L)") + 
theme_bw() 

 
 
Wrap by habitat (continuous or fragmented) 
ggplot(agilis, aes(y=RBC,x=MONTH)) + geom_boxplot() + 
facet_wrap(~HABITAT) + xlab("Month") + ylab("Red blood cell 
count (cells/L)") + theme_bw() 
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Wrap by habitat (continuous or fragmented) and sex 
ggplot(agilis, aes(y=RBC,x=MONTH)) + geom_boxplot() + 
facet_wrap(MF~HABITAT) + xlab("Month") + ylab("Red blood cell 
count (cells/L)") + theme_bw() 
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With colour 
 
ggplot(agilis, aes(y=RBC,x=YEAR, fill=MF)) + geom_boxplot() + 
facet_wrap(MF~HABITAT) + xlab("Year") + ylab("Red blood cell 
count (cells/L)") + theme_bw() 
	

	
 
ggplot(agilis, aes(y=RBC,x=YEAR, fill=MF)) + geom_boxplot() + 
facet_wrap(MF~HABITAT) + xlab("Year") + ylab("Red blood cell 
count (cells/L)") + theme_bw() + scale_fill_brewer(palette = 
"Blues") 
	

	 	



	
	

215	

Creating	a	confidence	interval	calculated	by	boxplot.stats.	This	is	effectively	turning	the	95%	
'notches'	from	a	boxplot	to	shaded	bars	instead.	
	
Create	a	function:	
f <- function(x) { 
    ans <- boxplot.stats(x) 
    data.frame(ymin = ans$conf[1], ymax = ans$conf[2]) 
} 
 
Create	the	plot	
ggplot(agilis, aes(y=RBC,x=MF)) + geom_boxplot() + 
  stat_summary(fun.data = f, geom = "linerange", colour = 
"skyblue", size = 5) 
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Same	as	above,	except	that	the	95%	CI	for	the	meadian	is	a	transparent	blue	bar	the	whole	
width	of	the	box.	
	
Create	a	function:	
f <- function(x) { 
    ans <- boxplot.stats(x) 
    data.frame(ymin = ans$conf[1], ymax = ans$conf[2]) 
} 
 
Create	the	plot	
ggplot(agilis, aes(y=RBC,x=MF)) +	geom_boxplot(width	=	0.8)	+	
stat_summary(fun.data	=	f,	geom	=	"crossbar",	colour	=	NA,	fill	=	"skyblue",	width	=	0.8,	
alpha	=	0.5)	
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Basic violin plot in ggplot2 
	
ggplot(dataset, aes(x=xvar, y=yvar)) + geom_violin() 
 
ggplot(agilis, aes(y=RBC, x=HABITAT)) + geom_dotplot() 
	

	
	
Remove trim, add colour and very simple boxplots 
 
ggplot(agilis, aes(y=RBC, x=HABITAT)) + 
geom_violin(trim=FALSE, fill='#A4A4A4', color="darkred", 
width=0.9) + geom_boxplot(width=0.1) + theme_minimal() 
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Same as above, but wrap by SEX 
 
ggplot(agilis, aes(y=RBC, x=HABITAT)) + 
geom_violin(trim=FALSE, fill='#A4A4A4', color="darkred", 
width=0.9) + geom_boxplot(width=0.1) + theme_minimal()+ 
facet_wrap(~MF) 
	

	
 

ggplot(agilis, aes(y=RBC, x=HABITAT, fill=MF)) + 
geom_violin(trim=FALSE, width=0.9) + geom_boxplot(width=0.1, 
fill="white") + theme_minimal() + facet_wrap(~MF) + 
scale_fill_brewer(palette = "Blues") 
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Basic kernal density plots in ggplot2 
Grouped by habitat (fragment or continuous; indicated by colour). The	alpha=0.5 is 
used to set transparency.	
	
ggplot(agilis, aes(x= MASS)) + geom_density() 
	

	
	
Same as above, but split by HABITAT 
ggplot(agilis, aes(x= MASS, group=HABITAT)) + geom_density() 
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Same as above, but add colours with 50% transparency, and x label 
 
ggplot(agilis, aes(x= MASS, group=HABITAT)) + 
geom_density(aes(fill = HABITAT), alpha = 0.5) + xlab("Mass 
(g)") 
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Same as above, but wrapped by sex and habitat, with minimal theme 
 
ggplot(agilis, aes(x= MASS, group=HABITAT)) + 
geom_density(aes(fill = HABITAT), alpha = 1.0) + xlab("Mass 
(g)") + facet_wrap(MF~HABITAT) + theme_minimal() 
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Grouped by SEX, HABITAT and MONTH 
ggplot(agilis, aes(x= MASS, group=MF)) + geom_density(aes(fill 
= MF), alpha = 0.75) + xlab("Mass (g)") + 
facet_wrap(MONTH~HABITAT) + theme_minimal() 
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Saving figures to files 
 
Often a journal will ask you to save files using a high resolution size or you may need to 
save a very large figure so that you can scale it up to look nice on a poster. There are two 
types of image file that you can choose from. 
 
Bitmap images are made up of pixels. A bitmap image will look pixellated or fuzzy if it 
is resized too large. A tiff, bmp or jpeg will store as a bitmapped file. 
 
Vector images are made up of equations and information that draws lines. A vector image 
can be scaled up to any size. A PDF, EPS or PS file will store as a vector. 
 
Sometimes we want to save directly to a PDF or an image file. First make sure to set your 
working directory to where you want the file to save to. In R Studio this will be Session 
> Set Workinging Directory > Choose directory 
 
To save an image to a pdf 
 
pdf(file="FILENAME.pdf", width = X, height = X, ...) 
 
Height and width default to inches. Use ?pdf and you'll find lots of ways to change this, 
as well as changing font sets etc. 
 
Insert plotting code now: the code below is an example one 
plot(MASS~NV, data = agilis) 
	
Run	to	reset	everything	when	done.	
dev.off() 
  
You won't see anything happen, but a file called "FILENAME.pdf" will appear in the 
working directory and will contain your graph. You can change the settings you use to 
make it look 'right'. Try starting with height=7, width=7, and then change things like cex, 
cex.axis, cex.lab in the plotting code. Of course, this is journal specific, many 
journals like their plots exactly one or two columns wide (in which case, check what the 
journal's column measures are in inches). 
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To save an image to a TIFF, JPEG or BMP 
 
Same for TIFFs, JPEGs, BMPs, etc (see ?tiff or ?jpeg for links to help file): 
 
Set your working directory: Session > Set Working Directory > Choose directory 
 
tiff(file="FILENAME.tiff", width = X, height = X, units = px, 
...) 
 
# Width and height default to pixels now, but this can be changed with the units 
parameter and setting units = in (inches), cm or mm 
 
If you look at ?tiff, you can also find settings like compression, font type, etc. 
 
Insert plotting code here 
plot(MASS~NV, data = agilis) 
 
Run to reset everything to deault. 
dev.off() 
 
As before, you won't see anything happen, but your file will appear in the working 
directory. 
 
EXAMPLE PDF 
pdf(file="TEST1.pdf", width = 7, height = 7) 
plot(MASS~NV, data = agilis)	
dev.off() 
 
EXAMPLE TIFF  
tiff(file="TEST1.tiff", width = 400, height = 400) 
plot(MASS~NV, data = agilis)	
dev.off() 
 
EXAMPLE TIFF WITH COMPRESSIONS 
tiff(file="TEST2.tiff", width = 400, height = 400, compression 
= "lzw") 
plot(MASS~NV, data = agilis)	
dev.off() 
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Diversity Indices 
Library 'adiv' has a number of useful diversity indices that can be applied to species 
counts. 
 
install.packages("adiv") 
library(adiv) 
 
# import the macnally.csv dataset 
birds <- read.table('macnally.csv', header=T, sep=',') 
 
Mac Nally recorded bird abundances (V1GST to V102KING) at sites divided into six forest 
types (Mixed, Gippsland Mallee, Montane Forest, Foothills Woodland, Box-Ironbark, River 
Red Gum). We'll use the bird counts to generate diversity indices. There are a couple 
steps to this: 
 
1) Generate a matrix of the counts 
2) Apply the diversity function(s) to the matrix 
 
We generate a matrix by nominating the columns we want to include. The easiest way 
to do this is pull out the columns by number. We want to avoid include the first two 
columns, because these are categorical data and the diversity function will refuse to work 
if you try to give it non-numerical data. 
 
# generate a matrix of bird counts from column 3 to column 13 
# just as an example 
birds.matrix <- as.matrix(birds[,3:13]) 
birds.matrix 
 
# generate a matrix of all bird counts  
# from column 3 to 104 (note that the species names are coded) 
birds.matrix <- as.matrix(birds[,3:13]) 
birds.matrix # look at matrix 
 
We can generate diversity indices of all possible options, but this is not very useful, as 
we can't easily test these against variables in the original dataset. 
 
diversities <- speciesdiv(birds.matrix) # all diversity indices 
diversities # look at indices 
 
Instead we'll just pull out a few of the more widely used indices. 
 
birds$RICHNESS <- speciesdiv(birds.matrix, method = "richness") 
birds$GINISIMPSON <- speciesdiv(birds.matrix, method = "GiniSimpson") 
birds$SIMPSON <- speciesdiv(birds.matrix, method = "Simpson") 
birds$SHANNON <- speciesdiv(birds.matrix, method = "Shannon") 
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And we'll extract a commonly used evenness index too, the Hills Numbers. 
 
birds$EVENNESS <- eveparam(birds.matrix, method = "hill") 

 
We wouldn't typically use all of these indices as responses, because several of them will 
tend to correlate anyway. If in doubt, GiniSimpson (which accounts for both diversity and 
abundance) and Hill's evenness is a reasonable suite to look at. We'll check these as 
responses against Habitat. 
 
richness.aov <- aov(RICHNESS~HABITAT, data = birds) 
ginisimpson.aov <- aov(GINISIMPSON~HABITAT, data = birds) 
evenness.aov <- aov(EVENNESS~HABITAT, data = birds) 

 
 

 
 
Because we have three or more levels in a factor (i.e. Habitat is made up of three or more 
levels), we'd need to use a post hoc test such as a Tukey's to tease apart what is going 
on here, however, that is a relatively simple next step. We also might need to consider 
using a linear mixed effects model instead of an ANOVA to control for pseuoreplication 
if we have multiple samples from a single site, but that is covered under the linear mixed 
effects section.  

	  

RESULT 
 
> summary(richness.aov) 
            Df Sum Sq Mean Sq F value   Pr(>F)     
HABITAT      5 126.98  25.397   11.46 2.54e-06 *** 
Residuals   31  68.69   2.216                      
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
 
> summary(ginisimpson.aov) 
            Df  Sum Sq  Mean Sq F value Pr(>F)   
HABITAT      5 0.07178 0.014356   2.454 0.0552 . 
Residuals   31 0.18138 0.005851                  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
 
> summary(evenness.aov) 
            Df Sum Sq Mean Sq F value  Pr(>F)    
HABITAT      5 0.1893 0.03786   4.553 0.00315 ** 
Residuals   31 0.2578 0.00831                    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Advanced Statistics 
The following material covers a number of slightly more sophisticated statistical tests 
that you may require. 
 

Principal Components Analysis 
Multivariate datasets can have a large number of either predictor or response variables 
(or both). Traditionally, one way to analyse large multivariate datasets is to use principal 
components analysis (PCA). PCA is not as widely used as it once was, but it is still a useful 
function to be aware of. 
 
Useful things about a PCA 
Allows for variable reduction: if you have too many predictor variables (i.e. your ANOVA 
models will be overparametised) you can use PCA to create axes that represent gradients 
in the dataset 
Allows multiple response variables to be analysed as a whole: this function is similar to 
the application of a test like a MANOVA, except that more information can be extracted 
from a PCA than from a MANOVA sometimes 
Allows correlating predictor variables to be analysed together: including two correlating 
variables in a PCA will generate an axis that accounts for both of them. 
 
The two native functions in R are prcomp and princomp, which differ in the mathematics 
used to calculate them. Generally, prcomp is preferred over princomp. However, here 
we're going to start with princomp and then provide prcomp for comparison. 
 

princomp 
 

Load libraries 
library(vegan) 
library(MASS) 
 
Load data 
agilis <- read.table('agilis-abundance.csv',header=T,sep=',') 
 
str(agilis)	
 
Generate a PCA using total area at basal height, median area at basal height, stumps, 
shrub count, shrub species and percentage of trees that were not Eucalyptus (measured 
in 20x20 m quadrats at study sites) 
 
veg.pca <- princomp(~ ABH.m2 + median.ABH + STUMPS + SHRUB.COUNT 
+ SHRUB.SPECIES + pcNONEUC, cor=T, data=agilis) 
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Plot the first two PCA axes 
biplot(veg.pca) # just picks the first two axes 
 
The first two axes of the PCA have been plotted. The black numbers are site numbers, 
and their relative position tells you something about how similar sites are. The red arrows 
can be thought of as strength of contributions by the variables, and they are also 
indicators of correlation. median.ABH is pointing in the opposite direction to 
pcNONEUC. This means that these two variables are negatively correlated. ABHm2 and 
SHRUB.COUNT are pointing in the same direction. They are positively correlated. 
 

	
Figure 1. Biplot of a principal components analysis based on vegetation data collected at 120 

sites in South Gippsland. 
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Plot an ordiplot with the type set to "none" (should be blank) 
ordihull(ordiplot(veg.pca, type="none"), agilis$HABITAT) 
	
Add labels to the ordiplot 
text(veg.pca$scores, labels=agilis$HABITAT, 
col=as.numeric(agilis$HABITAT)) 

	
Figure 1. Ordiplot of the first two PCA axes. Forest fragment sites are in black (F) and continuous 
control sites are in red (C). There seems to be a reasonable amount of overlap between the two 
types of sites. 
 
A PCA generates one axis per variable that was entered into it. There were six variables 
so we expect six axes. The first axis will explain the most variation, the second axis will 
explain the next most variation and so on. If we want to make use of the axes, we need 
to move them back to our original dataset. 
 
Try these lines and look to see what happens: 
 
ordihull(ordiplot(veg.pca, type = "none", choices=c(1,3)), 
agilis$HABITAT) 
  
text(veg.pca$scores[,1],veg.pca$scores[,3], 
labels=agilis$HABITAT, col=as.numeric(agilis$HABITAT)) 
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What if you want to plot points instead of labels or letters? Have a go at this: 
ordihull(ordiplot(veg.pca,type="none"),agilis$HABITAT) 
 
points(veg.pca$scores, col=as.numeric(agilis$HABITAT), pch=16) 
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You can move the scores to the dataset also. The scores will be slotted in next to each 
observation. 
 
agilis$pca.1 <- veg.pca$scores[,1] 
agilis$pca.2 <- veg.pca$scores[,2] 
agilis$pca.3 <- veg.pca$scores[,3] 
agilis$pca.4 <- veg.pca$scores[,4] 
agilis$pca.5 <- veg.pca$scores[,5] 
agilis$pca.6 <- veg.pca$scores[,6] 
 
Now check how the agilis data has changed. 
str(agilis) 
head(agilis) 
View(agilis) 
 
Classically, the scores are all assumed to be independent, and as such they can be 
analysed in a linear model like an ANOVA or ANCOVA without breaking assumptions. 
Have a go at the following, and interpret them. What do you think is probably the 
hypothesis and null hypothesis of the following tests? (sqrtAGILIS is a measure of 
agile antechinus abundance at sites.) 
 
summary(aov(pca.1~HABITAT, data=agilis)) 
 
summary(aov(sqrtAGILIS~pca.1*pca.2*pca.3, data=agilis)) 
	 	
summary(aov(sqrtAGILIS~pca.1+pca.2+pca.3, data=agilis))	
	
I've stated 'classically' above, because there is increasingly some debate about how 
independent pca scores really are. However, keep in mind that the reason we care about 
independence is that we don't want predictors to be explaining the same variance in a 
model. If you were concerned, you could always use cor to check the correlations among 
your pca axes and remove an axes if you find correlations > 0.6. Note that the 
'independence' being discussed here is not the same as sample or replicate 
independence, which required for all statistical tests and is a function of good 
experimental design.	
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The first ANOVA suggests that PCA1 is significantly associating with HABITAT (P = 0.046). 
The second ANOVA suggests that PCA2 is a significant predictor of agile antechinus 
abundance (sqrtAGILIS) (P = 0.006). The third ANOVA is examining the same relationship, 
but the non-significant interaction terms have been removed to simplify the model. PCA2 
is still significantly associating with agile antechinus abundances (P=0.007). 
 

RESULT 
 
> summary(aov(pca.1~HABITAT, data=agilis)) 
             Df Sum Sq Mean Sq F value Pr(>F)   
HABITAT       1   7.45   7.451   4.063 0.0461 * 
Residuals   118 216.40   1.834                  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
> summary(aov(sqrtAGILIS~pca.1*pca.2*pca.3, data=agilis)) 
                   Df Sum Sq Mean Sq F value  Pr(>F)    
pca.1               1  0.006  0.0058   0.102 0.75025    
pca.2               1  0.442  0.4421   7.727 0.00638 ** 
pca.3               1  0.145  0.1453   2.540 0.11384    
pca.1:pca.2         1  0.014  0.0144   0.252 0.61659    
pca.1:pca.3         1  0.163  0.1628   2.846 0.09438 .  
pca.2:pca.3         1  0.042  0.0420   0.735 0.39321    
pca.1:pca.2:pca.3   1  0.098  0.0978   1.709 0.19381    
Residuals         112  6.408  0.0572                    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
> summary(aov(sqrtAGILIS~pca.1+pca.2+pca.3, data=agilis)) 
             Df Sum Sq Mean Sq F value  Pr(>F)    
pca.1         1  0.006  0.0058   0.100 0.75182    
pca.2         1  0.442  0.4421   7.625 0.00669 ** 
pca.3         1  0.145  0.1453   2.506 0.11611    
Residuals   116  6.725  0.0580                    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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PCA Loadings 
veg.pca$loading shows the contribution of each variable to each axis. You can read 
the values as if they were correlation coefficients (i.e. the range from -1 to +1 where 
numbers that are further from zero have a strong association with an axes).	
	

	
 

Q. What is the strongest positive contributor to axis 1? 

 
ABH.m2 
Area at base height of trees has a strong positive 0.560 contribution to PCA1. 
 

Q. What is the strongest negative contributor to axis 2? 

 
SHRUB.SPECIES 
Shrub species richness has a strong negative -0.602 contribution to PCA2. 
 

Q. Which variable is not contributing to axis 4? 

 
ABH.m2 
Area at base height of trees is missing from PCA4 (i.e. it's contribution to this axes is 
zero). 
 

	  

RESULT 
 
> veg.pca$loading 
 
Loadings: 
              Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 
ABH.m2         0.560 -0.165  0.302        -0.149 -0.739 
median.ABH     0.156  0.471 -0.797  0.154 -0.123 -0.282 
STUMPS         0.489  0.240  0.186  0.651  0.353  0.347 
SHRUB.COUNT    0.473 -0.245 -0.300 -0.556  0.540  0.159 
SHRUB.SPECIES  0.276 -0.602 -0.296  0.217 -0.556  0.343 
pcNONEUC      -0.353 -0.520 -0.249  0.441  0.487 -0.334 
 
               Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 
SS loadings     1.000  1.000  1.000  1.000  1.000  1.000 
Proportion Var  0.167  0.167  0.167  0.167  0.167  0.167 
Cumulative Var  0.167  0.333  0.500  0.667  0.833  1.000 
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Cumulative summing 
(cumsum(veg.pca$sd^2))/6  # where 6 = number of axes	
	

	
 
This is the cumulative amount of variation explained by the axes. There are a number of 
axes equal to the variables that were included. However, we won't want to keep all the 
axes for analysis because there is a diminishing return on how much variation in the 
overall pattern of data is being explained by each axis. 
 

Eigenvalues (keep axis if Eigenvalues > 1) 
veg.pca$sd^2 
	

	
 
You can read the Eigenvalues as being something like percentages of variation in the 
data explained by the axes, except that they are written as proportions, and the total 
variation available to explain is equal to the number of components x 100. I terms of the 
practical implantation, this use of Eigenvalues relates to one purpose for PCAs: variable 
reduction. We started with six environmental variables, but, we have concerns that some 
of these variables are co-correlating, and we would like to reduce these variables down 
to a smaller number (maybe 2-3) synthetic variables that capture a biological gradient or 
trend. To decide which axes to keep, we check the Eigenvalues. Any axes with an 
Eigenvalue >1 is explaining more than 100% of the variable we would expect it to 
explain, all things being equal. That is, it is explaining more than it's 'fair share' of 
variation. So, a very straightforward rule is to keep any axes with Eigenvalue >1 in your 
subsequent analyses, and discard the rest of the eaxes. 
 
  

RESULT 
 
   Comp.1    Comp.2    Comp.3    Comp.4    Comp.5    Comp.6  
0.3109087 0.5353282 0.6896440 0.8094749 0.9143534 1.0000000 

RESULT 
 
   Comp.1    Comp.2    Comp.3    Comp.4    Comp.5    Comp.6  
1.8654520 1.3465174 0.9258945 0.7189857 0.6292710 0.5138793 
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plot(veg.pca) # plots the Eigenvalues 
	

	
Figure 1. Plot of the Eigenvalues for the PCA. 

 
Another way to view Eigenvalues is to plot them directly from the pca. 
 

Proportion of variance explained by axes 
summary(veg.pca) 
	

	
 
A note on 'construct validity' 
In	psychology,	PCAs	are	often	used	to	check	whether	questions	on	a	survey	are	contributing	
in	a	balanced	way	to	a	'construct',	that	is	an	underlying	psychological	trait	(such	as	empathy,	
or	anxiety).	This	means	that	there	is	quite	a	bit	of	advice	online	about	how	to	asses	construct	
validity	 in	 a	PCA,	 and	when	 to	 keep	or	 remove	variables.	Because	we	 tend	 to	use	PCA	 in	
biological	sciences	to	look	at	actual,	real	living	systems,	'construct	validity'	is	less	of	a	concern,	
and	 in	 actuality,	 some	 of	 the	 things	 that	 would	 be	 problematic	 in	 psychology	 (such	 as	 a	
variable	contributing	to	just	one	principal	component	axes),	would	be	of	genuine	biological	
interest	in	a	PCA	derived	from	environmental	gradients,	morphology	or	genetic	expression.	
This	means	that	rather	than	remove	variables	that	are	not	forming	part	of	a	coherent	pattern,	
we	 tend	 to	 be	 interested	 in	 interrogating	why	 a	 given	 variable	 appears	 to	 be	 (relatively)	
independent	 of	 the	 other	 biological	 variables	 included	 in	 the	 PCA.	 That	 is,	 it	 is	 generally	
preferable	in	biology	to	leave	all	variables	in	the	PCA	that	you	included	in	the	first	place,	and	
treat	 these	 as	 a	 sort	 of	 a	 priori	 inclusion	 in	 a	 model,	 that	 then	 can	 be	 examined	 using	
significance	tests.	
	
	 	

RESULT 
 
Importance of components: 
                          Comp.1    Comp.2    Comp.3    Comp.4    Comp.5     Comp.6 
Standard deviation     1.3658155 1.1603954 0.9622341 0.8479303 0.7932661 0.71685376 
Proportion of Variance 0.3109087 0.2244196 0.1543158 0.1198310 0.1048785 0.08564655 
Cumulative Proportion  0.3109087 0.5353282 0.6896440 0.8094749 0.9143534 1.00000000 
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Analysis 
We're going to use these axes as explanatory variables in a regression analysis of agile 
antechinus abundances. The abundances have already been transformed for normality 
(sqrtAGILIS) so you should be able to simply apply the regression analysis without 
needing to further transform the data. 
 

The PCA axes are independent and normally distributed by default 
Normally, the rule of thumb is to retain all axes that explain more than their 'fair share' 
of variance, which will roughly equate with an Eigenvalue of > 1. I've retained axis 3 as 
well, because although it has an Eigenvalue of < 1, it isn't much below 1 and it is probably 
worth looking at, even if just quickly (i.e axes 3 might not make it into a final report, but 
my preference is just to check Eigenvalues >0.9 just to see if there is anything of interest 
there). 
 
abundance.lm <- lm(sqrtAGILIS ~ pca.1* pca.2 * pca.3, 
data = agilis) 
 
summary(abundance.lm)	
	

	
	
No significant interactions. Best to remove the interaction terms at this point (unless they 
were a part of you original hypothesis).	
	
  

RESULT 
 
> summary(abundance.lm) ## No significant interactions ## 
 
Call: 
lm(formula = sqrtAGILIS ~ pca.1 * pca.2 * pca.3, data = agilis) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.45095 -0.15859 -0.03536  0.15458  0.67305  
 
Coefficients: 
                   Estimate Std. Error t value Pr(>|t|)     
(Intercept)        0.393394   0.030317  12.976   <2e-16 *** 
pca.1             -0.018010   0.023524  -0.766   0.4455     
pca.2             -0.059790   0.035798  -1.670   0.0977 .   
pca.3             -0.007091   0.078351  -0.091   0.9281     
pca.1:pca.2       -0.008623   0.029305  -0.294   0.7691     
pca.1:pca.3       -0.024637   0.025813  -0.954   0.3419     
pca.2:pca.3       -0.050280   0.032221  -1.560   0.1215     
pca.1:pca.2:pca.3  0.030042   0.022981   1.307   0.1938     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.2392 on 112 degrees of freedom 
Multiple R-squared:  0.1244, Adjusted R-squared:  0.06966  
F-statistic: 2.273 on 7 and 112 DF,  p-value: 0.03349 
 



	
	

237	

abundance.lm <- lm(sqrtAGILIS ~ pca.1 + pca.2 + pca.3, 
data = agilis) 
 
summary(abundance.lm)	
	

	
 
So, this leaves us with a significant intercept (not especially meaningful), and a 
significant effect of PCA2 on agile antechinus abundance. The effect size is negative, but 
we can plot the relationship to see what is happening. 
 
  

RESULT 
 
Call: 
lm(formula = sqrtAGILIS ~ pca.1 + pca.2 + pca.3, data = agilis) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.49533 -0.16478 -0.02824  0.13692  0.67158  
 
Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     
(Intercept)  0.365900   0.021980  16.647  < 2e-16 *** 
pca.1       -0.005101   0.016093  -0.317  0.75182     
pca.2       -0.052306   0.018942  -2.761  0.00669 **  
pca.3       -0.036164   0.022843  -1.583  0.11611     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.2408 on 116 degrees of freedom 
Multiple R-squared:  0.08106, Adjusted R-squared:  0.05729  
F-statistic: 3.411 on 3 and 116 DF,  p-value: 0.01991 



	
	

238	

plot(sqrtAGILIS~pca.2, data = agilis, pch = 20, col = "grey40", 
ylab = "Square root of agile antechinus abundance", xlab = "PCA2 
of environmental variables") 
 
abline(lm(sqrtAGILIS~pca.2, data = agilis), col="darkred", 
lwd=2) 
 

 
 
In order to interpret the result we need to look at the loadings for PCA2. 
 

 
	

RESULT 
 
> veg.pca$loading 
 
Loadings: 
              Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 
ABH.m2         0.560 -0.165  0.302        -0.149 -0.739 
median.ABH     0.156  0.471 -0.797  0.154 -0.123 -0.282 
STUMPS         0.489  0.240  0.186  0.651  0.353  0.347 
SHRUB.COUNT    0.473 -0.245 -0.300 -0.556  0.540  0.159 
SHRUB.SPECIES  0.276 -0.602 -0.296  0.217 -0.556  0.343 
pcNONEUC      -0.353 -0.520 -0.249  0.441  0.487 -0.334 
 
               Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 
SS loadings     1.000  1.000  1.000  1.000  1.000  1.000 
Proportion Var  0.167  0.167  0.167  0.167  0.167  0.167 
Cumulative Var  0.167  0.333  0.500  0.667  0.833  1.000 
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PCA2	 has	 an	 overall	 negative	 association	with	 agile	 antechinus	 abundance	 (t	 =	 -2.76,	 P	 =	
0.007).	As	values	of	PCA2	increase,	there	were	declines	in	total	area	at	base	height	of	trees	
(loading	=	-0.165),	shrub	count	in	a	20x20	quadrat	(loading	=	-0.245),	shrub	species	richness	
(loading	=	 -0.602)	and	percentage	of	non-eucalyptus	species	 in	 the	tree	stand	 (loading	=	 -
0.560).	In	contrast	the	median	area	at	base	height	of	trees	(loading	=	+0.471)	and	number	of	
tree	stumps	(loading	=	+0.240)	increased	with	increasing	values	of	PCA2.	This	suggests	that	
agile	antechinus	were	at	the	highest	abundances	in	sites	with	a	large	sum	of	total	tree	areas	
(typical	of	densely	treed	areas),	large	numbers	of	shrubs	that	had	greater	species	diversity,	as	
well	 as	 greater	 overall	 tree	 diversity	 (as	 indexed	 by	 percentage	 of	 trees	 that	 were	 not	
eucalyptus	 species).	Sites	 that	had	a	 large	median	 individual	 tree	area	 (perhaps	 indicating	
stands	 where	 2-3	 large	 trees	 were	 dominating	 a	 given	 area),	 and	 stumps	 (indicative	 of	
disturbance),	tended	to	have	lower	abundances	of	agile	antechinus.	
	
As	stumps	tend	to	be	indicative	of	tree	felling,	and	non-eucalyptus	trees	tends	to	be	the	more	
valuable	timber	(e.g.	blackwoods)	in	the	area	studied,	and	are	also	individually	smaller	trees	
species	that	eucalyptus	on	average,	this	PCA	gradient	may	be	an	index	of	human	disturbance	
and	selective	logging	and	milling	of	commercially	valuable	non-eucalyptus	trees.	
	 	



	
	

240	

Now have a go at these analyses: 
 
veg.pca <- princomp(~ ABH.m2 + median.ABH + STUMPS + 
SHRUB.COUNT + SHRUB.SPECIES + TREE.SPECIES + WOODY.DEBRIS + 
CANOPY + MIDSTOREY + UNDERSTOREY + GROUNDCOVER + LEAF.LITTER + 
pcDEAD + pcNONEUC, cor=T, data=agilis) 
 
Move the scores to the dataset 
agilis$pca.1  <- veg.pca$scores[,1] 
agilis$pca.2  <- veg.pca$scores[,2] 
agilis$pca.3  <- veg.pca$scores[,3] 
agilis$pca.4  <- veg.pca$scores[,4] 
agilis$pca.5  <- veg.pca$scores[,5] 
agilis$pca.6  <- veg.pca$scores[,6] 
agilis$pca.7  <- veg.pca$scores[,7] 
agilis$pca.8  <- veg.pca$scores[,8] 
agilis$pca.9  <- veg.pca$scores[,9] 
agilis$pca.10 <- veg.pca$scores[,10] 
agilis$pca.11 <- veg.pca$scores[,11] 
agilis$pca.12 <- veg.pca$scores[,12] 
agilis$pca.13 <- veg.pca$scores[,13] 
agilis$pca.14 <- veg.pca$scores[,14] 
 
Try using the PCA axes (you pick how many) as an explanatory variable for agile 
antechinus abundance in a regression analysis (lm). You could try examining bush rat 
abundances by using sqrtFUSCIPES as a response instead of sqrtAGILIS. 
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prcomp 
 

The function prcomp is generally preferred, as it is considered mathematically more 
reliable than princomp. The prcomp function differs only in some minor code 
differences. 
 
princomp()  prcomp()  Description 
sdev sdev Standard deviations of the principal components 

loadings rotation 
Matrix of variable loadings (columns are 
eigenvectors) 

center center Variable means (means that were subtracted) 

scale scale 
Variable standard deviations (the scalings applied 
to each variable) 

scores x 
The coordinates of the individual observations on 
the principal component 

 
The following is the code necessary to run the same analysis as above, but using prcomp 
instead of princomp. 
 
Load libraries 
library(vegan) 
library(MASS) 
 
agilis <- read.table('agilis-abundance.csv', 
header=T, sep=',') 
 
str(agilis)	
veg.pca <- prcomp(~ ABH.m2 + median.ABH + STUMPS + SHRUB.COUNT 
+ SHRUB.SPECIES + pcNONEUC, scale=T, data=agilis) 
	
biplot(veg.pca) # just picks the first two axes 
	
ordihull(ordiplot(veg.pca, type="none"),agilis$HABITAT) 
text(veg.pca$x, labels=agilis$HABITAT, 
col=as.numeric(agilis$HABITAT)) 
	
ordihull(ordiplot(veg.pca, type = "none", 
choices=c(1,3)),agilis$HABITAT) 
  
text(veg.pca$x[,1],veg.pca$x[,3], 
labels=agilis$HABITAT, col=as.numeric(agilis$HABITAT)) 
 
ordihull(ordiplot(veg.pca, type="none"), agilis$HABITAT) 
points(veg.pca$x, col = as.numeric(agilis$HABITAT), pch = 16)	  
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You can move the scores to the dataset also. The scores will be slotted in next to each 
observation. 
 
agilis$pca.1 <- veg.pca$x[,1] 
agilis$pca.2 <- veg.pca$x[,2] 
agilis$pca.3 <- veg.pca$x[,3] 
agilis$pca.4 <- veg.pca$x[,4] 
agilis$pca.5 <- veg.pca$x[,5] 
agilis$pca.6 <- veg.pca$x[,6] 
 
Now check how the agilis data has changed. 
str(agilis) 
head(agilis) 
View(agilis) 
 
veg.pca$rotation # contribution of each variable to each axis 
	
plot(veg.pca) # plots the Eigenvalues 
	
summary(veg.pca) # summary of the Eigenvalues 
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Comparison of prcomp and princomp 
	
 

		

	
 
Figure 1. Ordiplot of the first two PCA axes using princomp (ABOVE) and prcomp (BELOW). In this 
case, the two methods seem to have generated identicle results. 
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Ordination Plots 
A major use of PCA outputs is to graph groups and look for overlaps. This exploratory 
approach takes the view that groups with substantial overlaps are more similar in terms 
of the underlying axes, whereas groups that are disparate are more distinct. We'll use 
forest fragmented and control sites to look at the degree of overlap using our 
environmental variables measures at sites. 
 

Further graphing: prcomp (polygons) 
 
veg.pca <- prcomp(~ ABH.m2 + median.ABH + STUMPS + SHRUB.COUNT 
+ SHRUB.SPECIES + pcNONEUC, scale=T, data=agilis) 
 
ordiplot(veg.pca,type="n") # blank canvas plot 
ordihull(veg.pca, groups=agilis$HABITAT, draw="polygon", 
col="grey90", label=F) # Polygons with no labels 
 
text(veg.pca$x,lab=agilis$HABITAT,col="grey", adj =1.5) # Text 
added in grey with a slight offset of 1.5 characters 
 
agilis$HABITAT<-as.factor(agilis$HABITAT) # Change habitat to 
a factor to get the next step to work 
 
points(veg.pca$x, pch=16,col=as.numeric(agilis$HABITAT))  # 
Add points 
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Further graphing: princomp (polygons) 
	

veg.pca <- princomp(~ ABH.m2 + median.ABH + STUMPS + 
SHRUB.COUNT + SHRUB.SPECIES + pcNONEUC, cor=T, data=agilis) 
 
ordiplot(veg.pca,type="n") # blank canvas plot 
ordihull(veg.pca, groups=agilis$HABITAT, draw="polygon", 
col="grey90", label=F) # Polygons with no labels 
 
text(veg.pca$scores,lab=agilis$HABITAT,col="grey", adj =1.5) # 
Text added in grey with a slight offset of 1.5 characters 
 
agilis$HABITAT<-as.factor(agilis$HABITAT) # Change habitat to 
a factor to get the next step to work 
 
points(veg.pca$scores, pch=16,col=as.numeric(agilis$HABITAT)) 
# Add points 
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Further graphing: prcomp (ovals) 
 
veg.pca <- prcomp(~ ABH.m2 + median.ABH + STUMPS + SHRUB.COUNT 
+ SHRUB.SPECIES + pcNONEUC, scale=T, data=agilis) 
 
ordiplot(veg.pca,type="n") # blank canvas plot 
 
ordiellipse(veg.pca, groups=agilis$HABITAT, draw="polygon", 
col="grey90", label=F, kind="ehull") # Polygons with no labels 
 
 
text(veg.pca$x,lab=agilis$HABITAT,col="grey", adj =1.5) # Text 
added in grey with a slight offset of 1.5 characters 
 
agilis$HABITAT<-as.factor(agilis$HABITAT) # Change habitat to 
a factor to get the next step to work 
 
points(veg.pca$x, pch=16,col=as.numeric(agilis$HABITAT))  # 
Add points 
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Further graphing: princomp (ovals) 
	

veg.pca <- princomp(~ ABH.m2 + median.ABH + STUMPS + 
SHRUB.COUNT + SHRUB.SPECIES + pcNONEUC, cor=T, data=agilis) 
 
ordiplot(veg.pca,type="n") # blank canvas plot 
 
ordiellipse(veg.pca, groups=agilis$HABITAT, draw="polygon", 
col="grey90", label=F, kind="ehull") # Polygons with no labels 
 
text(veg.pca$scores,lab=agilis$HABITAT,col="grey", adj =1.5) # 
Text added in grey with a slight offset of 1.5 characters 
 
agilis$HABITAT<-as.factor(agilis$HABITAT) # Change habitat to 
a factor to get the next step to work 
 
points(veg.pca$scores, pch=16,col=as.numeric(agilis$HABITAT))  
# Add points 
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Further graphing: prcomp (isobars) 
 
veg.pca <- prcomp(~ ABH.m2 + median.ABH + STUMPS + SHRUB.COUNT 
+ SHRUB.SPECIES + pcNONEUC, scale=T, data=agilis) 
 
ordisurf(veg.pca,agilis$sqrtAGILIS, main="",col="forestgreen") 
 
agilis$HABITAT<-as.factor(agilis$HABITAT) # Change habitat to 
a factor to get the next step to work 
 
points(veg.pca$x, pch=16,col=as.numeric(agilis$HABITAT))  # 
Add points 
 
 

 
 
Agile antechinus abundance (sqrtAGILIS) plotted as a set of isobars over the first and 
second axes for the PCA. The peak abundhance is 0.44 sqrt captures per trap, which is 
highest in the cluster of continuous (black) forest sites to the bottom left.  

 
	  



	
	

249	

Further graphing: princomp (isobars) 
	

veg.pca <- princomp(~ ABH.m2 + median.ABH + STUMPS + 
SHRUB.COUNT + SHRUB.SPECIES + pcNONEUC, cor=T, data=agilis) 
 
ordisurf(veg.pca, agilis$sqrtAGILIS, main="", 
col="forestgreen") 
 
agilis$HABITAT<-as.factor(agilis$HABITAT) # Change habitat to 
a factor to get the next step to work 
 
points(veg.pca$scores, pch=16,col=as.numeric(agilis$HABITAT))  
# Add points 
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Note that the high abundance seems to correspond to a greater percentage of non-
eucalyptus tree species and greater shrub diversity. 

	
biplot(veg.pca, col=c("grey90","red")) 
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More fancy graphing for PCAs 
 
 
Install and load libraries (ggbiplot is currently in beta so it has to be downloaded as a 
beta) 
install.pacakges("ggplot2") 
library(ggplot2) 
install.packages("devtools") 
library(devtools) 
install_github('vqv/ggbiplot') 
library(ggbiplot) 
 
Load data 
agilis <- read.table('agilis-abundance.csv', 
header=T,sep=',') 
 
str(agilis)	
 
Construct a PCA 
veg.pca <- prcomp(~ABH.m2 + median.ABH + STUMPS + SHRUB.COUNT + 
SHRUB.SPECIES+pcNONEUC,scale=T,data=agilis) 
 
Set up your response category as a separate factor for ease of coding 
HABITAT<- agilis$HABITAT 
 
Create a basic plot for axis 1 and 2 based on ggplot 
g<-ggbiplot(veg.pca,obs.scale = 1,var.scale = 
1,groups=HABITAT,ellipse = TRUE) 
 
Have a look at it 
print(g) 
 
Add some modifications to the plot 
g<-g+scale_color_discrete(name = '')+theme_bw() 
 
Have a look at the new plot 
print(g) 
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PCA plot, version one… 

	
 
PCA plot, version two with modifications… 
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MANOVA  
A MANOVA (multivariate analysis of variance) is typically reported alongside PCA to 
provide P values. It is a test of multiple numeric (ideally continuous) responses against a 
single categorical predictor. The assumptions of the MANOVA should (strictly speaking) 
be met for the PCA to be valid too, and it is certainly worth checking them if you are 
running a PCA, regardless of whether you plan to use a MANOVA. 

 
ASSUMPTIONS OF MANOVA (& PCA too, really) 
(1) Observations must be independent 
(2) Univariate assumptions of ANOVAs are met 
 - Normal distributions of dependent variables within groups 
 - Equal variances of dependent variables within groups 
(3) Multivariate normality is met 
(4) Multivariate equal variances are met 

	
To test that the univariate assumptions of ANOVAs are met, the most straightforward 
thing to do is generate a set of univariate ANOVAs and check the diagnostic plots for 
each MANOA. We will use the same environmental data we use above and generate 
diagnostic plots for all relationships of  
	
	
agilis <- read.table('agilis-abundance.csv', 
header=T, sep=',') 
 
str(agilis) 
	

1) Univariate assumptions of ANOVAs are met 
	
par(mfrow=c(6,4)) 
plot(aov(ABH.m2~HABITAT, data = agilis)) 
plot(aov(median.ABH~HABITAT, data = agilis)) 
plot(aov(STUMPS~HABITAT, data = agilis)) 
plot(aov(SHRUB.COUNT~HABITAT, data = agilis)) 
plot(aov(SHRUB.SPECIES~HABITAT, data = agilis)) 
plot(aov(pcNONEUC~HABITAT, data = agilis)) 
	
The diagnostic plots are shown over-page. Arguably, some of the QQ plots are indicating 
non-normality of residuals, and the residuals-vs-fitted do look 'wedgy' in places, 
suggesting that variances are not equal. If we were publishing this data, we would 
consider transforming the responses. However, for simplicity of explanation, I'm just 
going to continue with the data as is. Note that I'm doing this to make the demonstration 
easier: the following plots really don't look great.	
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2) Multivariate normality is met 
	
To check multivariate normality we need to set up a numeric matrix of responses.	
	
attach(agilis) 
 
y <- cbind(ABH.m2, median.ABH, STUMPS, SHRUB.COUNT, SHRUB.SPECIES, 
pcNONEUC) 
	
We will then use the mvn in library MVN to check multivariate normality. This is read in 
the same way as a standard univariate Shapiro-Wilks test, where P < 0.05 indicates a 
departure from normality. Other multivariate tests of normality, hz, royston, dh and 
energy are also available in the MVN package. The code is the same as below except 
that mardia is replaced with the name of the other test.	
	
install.packages("MVN") 
library(MVN) 
 
par(mfrow=c(1,1)) 
 
 
mvn(y, mvnTest = "mardia", multivariatePlot = "qq") 
# Marida's Multivariate Normality Test 
# kurtosis & skew should not be significant 
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The mutlivariate test of normality is indicating that we have problems with both 
skewness and kurtosis (both a significant). The dataset definitely needs transformation, 
or might be more suitable for a non-parametric method, such as NMDS (described below). 
Let's persist and look at whether the multivariate variances are equal by group. 

 
2) Multivariate equal variances 
	
To check multivariate equal variances we will use the numeric matrix again. What we are 
checking here is whether there is equal covariances of the responses across the predictor 
groups we are interested in.	
	
We will then use Box's M test of covariance matrices (boxM in library biotools).	
	
install.packages("heplots") 
library(biotools) 
 
boxM(y, agilis$HABITAT) 
 

 

RESULT 
  
 $multivariateNormality 
             Test        Statistic               p value Result 
1 Mardia Skewness 1264.84949032525 8.92474964193033e-228     NO 
2 Mardia Kurtosis 30.5199762850272                     0     NO 
3             MVN             <NA>                  <NA>     NO 
 
$univariateNormality 
          Test      Variable Statistic   p value Normality 
1 Shapiro-Wilk    ABH.m2        0.8509  <0.001      NO     
2 Shapiro-Wilk  median.ABH      0.2956  <0.001      NO     
3 Shapiro-Wilk    STUMPS        0.6394  <0.001      NO     
4 Shapiro-Wilk  SHRUB.COUNT     0.9577   8e-04      NO     
5 Shapiro-Wilk SHRUB.SPECIES    0.9674  0.0052      NO     
6 Shapiro-Wilk   pcNONEUC       0.8870  <0.001      NO    	

RESULT 
  
  Box's M-test for Homogeneity of Covariance Matrices 
 
data:  y 
Chi-Sq (approx.) = 166.68, df = 21, p-value < 2.2e-16 
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It	appears	that	we	also	have	unequal	multivariate	variances	across	the	groups.	This	data	is	
almost	 certainly	 not	 suitable	 for	 a	MANOA.	We	would	 probably	 opt	 to	 use	 a	 NMDS	 and	
ANOSIM	at	this	point,	but	for	completion,	let's	run	the	MANOVA	test	and	look	at	the	results.	
	

Running the MANOVA test 
	
habitat.mva <- manova(y~HABITAT) 
summary(habitat.mva) 
 

 
 
There is a significant difference in environmental variables by habitat type (continuous 
or fragmented), but keep in mind that all of the assumptions were failed, so this result 
is not reliable. 
 
The univariate results: 
summary.aov(habitat.mva) 
 
Results are shown over the page. There was a significant difference in stumps, shrub 
species richness and the percentage of trees that were not eucalyptus, but as per above, 
keep in mind that with the assumptions so badly failed, these results are not reliable. We 
definitely want to take this data and apply an NMDS approach instead. 
 
	 	

RESULT 
  
             Df  Pillai approx F num Df den Df    Pr(>F)     
HABITAT     1 0.41998   13.637      6    113 1.342e-11 *** 
Residuals 118                                              
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1	
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RESULT 
  
  > summary.aov(habitat.mva) 
 Response ABH.m2 : 
             Df   Sum Sq Mean Sq F value Pr(>F) 
HABITAT       1       20      20   1e-04 0.9934 
Residuals   118 33997556  288115                
 
 
 Response median.ABH : 
             Df     Sum Sq    Mean Sq F value  Pr(>F)   
HABITAT       1 2.0413e+09 2041343300  2.9604 0.08795 . 
Residuals   118 8.1366e+10  689546127                   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
 
 Response STUMPS : 
             Df  Sum Sq Mean Sq F value    Pr(>F)     
HABITAT       1  42.008  42.008  16.262 9.819e-05 *** 
Residuals   118 304.817   2.583                       
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
 
 Response SHRUB.COUNT : 
             Df Sum Sq Mean Sq F value  Pr(>F)   
HABITAT       1  10509 10509.4  3.7392 0.05555 . 
Residuals   118 331652  2810.6                   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
 
 Response SHRUB.SPECIES : 
             Df  Sum Sq Mean Sq F value  Pr(>F)   
HABITAT       1   8.533  8.5333  4.0224 0.04719 * 
Residuals   118 250.333  2.1215                   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
 
 Response pcNONEUC : 
             Df Sum Sq Mean Sq F value    Pr(>F)     
HABITAT       1 2.7242 2.72422  46.902 3.582e-10 *** 
Residuals   118 6.8538 0.05808                       
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Nonmetric Multidimensional Scaling  

One limitation of PCAs is that the result becomes more 'sub-optimal' the further away 
the data is from a set of normal distributions. Nonmetric multidimensional Scaling 
(NMDS) is another ordination approach that does not rely on normality of data. The 
disadvantage of NMDS compared to PCAs is that NMDS does not (easily) allow for 
'variable reduction'--that is, there is no easy way to extract something similar to a PCA 
axis and compare the values to loadings for interpretation against statistical tests like 
ANOVAs or t-tests. Nonetheless, especially for species count data, where the data may 
be extremely non-normal, NMDS may be the best option available. 
 
Load libraries 
library(vegan) 
library(MASS) 
 
Load data. Remember to change your working directory first. 
agilis <- read.table('agilis-abundance.csv', header=T,sep=',') 
str(agilis)	
 
First, we need to bind data together into a single set. We'll call this set y, although you 
could name it anything you want to. We will use the same data as was used for the PCA 
for comparison. This is a set of six environmental variables measured in eucalyptus forest 
sites in South Gippsland. 
 
attach(agilis) 
y <- cbind(~ABH.m2, median.ABH, STUMPS, SHRUB.COUNT, 
SHRUB.SPECIES, pcNONEUC) 
 
An NMDS won't work with duplicated rows. We can check this with the duplicated 
command. Here's what you would see if there were some duplicated rows. 
 
duplicated(y) 
[1] FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE 
FALSE  TRUE FALSE 
 
We need to take a moment to think about why there are duplicated rows. The unique 
command can be used to strip out duplicates, but before you do this, you need to work 
out whether this is a sensible step. These might be data entry errors, or they might be 
real data duplicates. Here is the code, but don't do this just yet… 
 
y <- unique(y) 
duplicated(y) 
 
But this is quite drastic. Is it a good idea to do here?  
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Why might we have duplicates? This is because the dataset is made up of male and 
female abundances, and males and females were (obviously) living in the same sites. So, 
the environmental variables are 'duplicated' for the two sexes. This means that the most 
sensible thing to do is probably to split by male and female and produce two NMDS (or 
average the data by site for the two sexes). 
 
Keep in mind that we are generating two NMDS that should be identical. We wouldn't 
expect any difference between the female and male NMDS because they both are based 
on the same set of environmental variables. Producing two NMDS, rather than one, is just 
a matter of playing on the safe side, as we want to compare the NMDS results to the 
original dataset, and working with males and females separately is just a little safer. 
 
Create subsets of only the variables you are interested in using for the basis of the 
NMDS. 
 
female <- subset(agilis,subset=agilis$SEX=='F') 
male <- subset(agilis,subset=agilis$SEX=='M')	
	
attach(female) 
female.y <- cbind(ABH.m2, median.ABH, STUMPS, SHRUB.COUNT, 
SHRUB.SPECIES, pcNONEUC) 
 
attach(male) 
male.y <- cbind(ABH.m2, median.ABH, STUMPS, SHRUB.COUNT, 
SHRUB.SPECIES, pcNONEUC) 
 
Now, we will generate distances based on Bray-Curtis dissimilarities. These are non-
parametric distances, which is one of the big advantages of NMDS over PCA. An NMDS 
is much more suitable for data like species counts than is a PCA, because species 
counts (for example) are often not normally distributed. The command is called 
'vegdist' because the package was originally created for botanists. 
 
female.dist <- vegdist(female.y, method = "bray") 
male.dist <- vegdist(male.y, method = "bray") 
 
You have a number of dissimilarity matric options. Use ?vegdist to view them. You 
will need to do a bit of reading up on various approaches to decide which is best, but 
as a starting point Bray-Curtis dissimilarity matrices are generally well liked. 
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Perform the multidimensional scaling. The command k=2 tells R to try and create two 
axes. Different numbers of axes will alter the 'stress' on the model (the degree to which 
the data is having to be twisted up to match the axes). We would tend to prefer stress 
in an NMDS to be below 0.15 or 15%. You can also try an iterative approach where you 
try k = 2, k = 3, k = 4 and pick the number of axes with the lowest stress. 
 
female.mds <-isoMDS(female.dist, k=2) 
male.mds <-isoMDS(male.dist, k=2) 
 
View the results. We'll just look at female.mds for now… the results are on the next 
page. 
 
female.mds	
	
A	key	thing	to	pay	attention	here	is	the	'stress'.	You	can	think	of	this	as	a	measure	of	the	
degree	to	which	the	data	has	to	be	contorted	and	twisted	to	fit	into	the	number	of	axes	you	
have	asked	for	(here,	2	axes).	The	isoMDS	function	multiplies	the	stress	by	100,	so	that	the	
stress	value	of	4.8	should	be	read	as	either	4.8%	or	0.048.	The	typical	breakdown is that 
stress < 0.05 is an excellent representation of the original data in reduced dimensions; 
< 0.1 is great; <0.15 is good; < 0.2 is acceptable, and stress > 0.3 provides a very poor 
representation.We	have	a	stress	of	0.048,	which	is	well	below	0.15,	which	is	the	usual	
threshold	that	is	used.	
	
As	a	test,	see	what	happens	if	you	increase	the	number	of	axes…	try	this:	
	
female.mds <-isoMDS(female.dist, k=3) 
female.mds	
	
and	
	
female.mds <-isoMDS(female.dist, k=5) 
female.mds	
	
Does	the	stress	increase	or	decrease?	It	should	decrease	with	increasing	numbers	of	axes,	
because	the	data	doesn't	need	as	much	contortion	to	fit	more	axes.	However,	in	our	
instance,	we	already	have	a	perfectly	good	stress	at	k=2	(two	axes),	so	we	will	stick	with	
that.	If	your	stress	is	15%,	the	you	may	need	to	increase	the	number	of	axes	to	bring	it	
under	15%.	Notice	also	that	as	you	increase	the	k,	the	number	of	columns	(containing	
synthetic	axis	values)	increases	to	match	k.	
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RESULT 
 
$points 
             [,1]         [,2] 
 [1,] -0.96615479  0.144868265 
 [2,] -1.44357877 -0.000543712 
 [3,] -0.21788957  0.082905390 
 [4,] -1.82468080 -0.363232668 
 [5,]  0.60275613  0.208649013 
 [6,]  1.13070582  0.013311258 
 [7,]  0.45859702 -0.097704434 
 [8,]  0.17326574  0.405981457 
 [9,] -1.26389869  0.022445365 
[10,] -1.47021456 -0.289450802 
[11,] -0.57205734  0.067410399 
[12,] -0.20821781  0.028843803 
[13,] -1.19447307  0.089615265 
[14,]  0.56380012  0.335212120 
[15,] -0.94317527  0.053315377 
[16,] -1.55030903 -0.209722507 
[17,]  1.58721462  0.124209746 
[18,] -2.50460748 -0.538924605 
[19,] -0.76625775 -0.047346446 
[20,]  1.85246162  0.365160488 
[21,]  0.75593823  0.418793619 
[22,] -0.37849132 -0.076688801 
[23,] -0.77491349 -0.335736327 
[24,]  0.57780265  0.487023542 
[25,]  0.31862263  0.371708129 
[26,] -0.21904967  0.032116977 
[27,]  0.69845165 -0.118854730 
[28,]  0.87865561  0.573727596 
[29,]  0.83292493  0.289940260 
[30,]  0.24749676 -0.090787429 
[31,]  0.99372597  0.115986274 
[32,] -0.18146465 -0.157593561 
[33,]  0.67243172 -0.428235084 
[34,] -0.93018726  0.378949247 
[35,]  0.23756426 -0.104480319 
[36,] -3.17185459 -1.416230295 
[37,]  0.08611587 -0.206890877 
[38,]  0.66506936  0.488828549 
[39,]  0.53450984  0.550959299 
[40,] -1.02845028 -0.191097564 
[41,]  0.99472534 -0.335686944 
[42,]  0.03405531  0.568535584 
[43,]  0.03856378  0.269935961 
[44,]  1.05849896  0.179479569 
[45,]  1.86119470  0.425256543 
[46,]  1.35458597 -0.427008818 
[47,] -4.05496686 -2.117757748 
[48,] -0.29532518  0.109827988 
[49,] -0.05328914  0.426629844 
[50,]  1.29541224 -0.108002043 
[51,] -0.96480595 -0.012379569 
[52,]  1.19632978 -1.043637889 
[53,]  1.71140122  0.498575204 
[54,]  0.90976718 -0.182672910 
[55,]  1.21162000  0.088424282 
[56,]  0.47828599  0.229274784 
[57,] -0.27916480  0.125922023 
[58,]  1.32376763 -0.084686297 
[59,]  0.65067383  0.379054257 
[60,] -0.72951434  0.034474899 
 
$stress 
[1] 4.81661 
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Shepard Plot 
A stress of 4.8 is read as 4.8% or 0.048. This is well below the usual 15% threshold, and 
so we can accept this NMDS as appropriate.  
 
You can create a Shepard Plot, which in NMDS should appear as a monotonic series of 
points, and in a situation where dissimilarities are used (as in here) the plot should run 
from the bottom left to the top right (MDS can be based on similarities, but we won't 
cover this here). 
 
plot(Shepard(female.dist,female.mds$points)) 

	
 
 
The Shepard plot should follow a smooth line or curve with a reasonably tight scatter 
around the line. We seem to have a reasonably nice-looking curve here, and our results 
are probably sound. If the Shepard plot looks like 'steps' or has a clear bend or L shape 
to it, then NMDS may not be suitable for the data, and other methods should be 
investigated. 
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Contribution of variables to axes 
The 'envfit' command in library 'vegan' allows you to check the relative contribution of 
the original variables against your axes. It is call envfit because the authors assume you 
will be working with environmental data, but, of course it could be applied to anything 
that was used to build an NMDS (i.e. genetic or morphometric data would work fine too). 
 
agilis.envfit <- envfit(female.mds,female.y, choices=c(1,2)) 
agilis.envfit 
	

	
 
 
The 'envfit' function runs a permutation test to identify associations between the 
measured variables (here vegetation measures) and the NMDS axes. The permutation 
test works by shuffling data and working out how often a test statistic of the magnitude 
of the observed from the actual data might occur by chance alone. The R2 value is the 
proportion of times that the actual data has a greater magnitude than the random data. 
The results present: 

• Cosine of the angle to each axis: you can read these as if they were Pearson's r 
values. The closer to +1, the closer we are to a perfect positive association 
between a variable and an axis. The closer the -1, the closer we are to a perfect 
negative fit. In the above example, stumps has a -0.998 value for Dim1 and a -
0.056 value for Dim2. This means that stumps is strongly aligning with Dim1 and 
as values of Dim1 increase, the number of stumps decreases. With regards to 
Dim2, stumps has no particular relationship. As a rule of thumb, anything below 
0.4 is probably not worth interpreting. 

• R2 of the fit of the original data to the ordination. 
• P value based on permutations. 

 
	 	

RESULT 
 
***VECTORS 
 
                  Dim1     Dim2     r2 Pr(>r)     
ABH.m2         0.17196 -0.98510 0.2477  0.002 **  
median.ABH    -0.26006 -0.96559 0.6692  0.001 *** 
STUMPS        -0.99840 -0.05647 0.0340  0.336     
SHRUB.COUNT    0.21907 -0.97571 0.0844  0.076 .   
SHRUB.SPECIES  0.44290 -0.89657 0.2602  0.001 *** 
pcNONEUC       0.98416  0.17727 0.2409  0.001 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 
1 
Permutation: free 
Number of permutations: 999 
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This means that the R2 and the P value may be of only limited use to you. These are 
informative about whether a variable is showing a strong relationship with both axes 
combined. However, it may be interesting to examine axes one-by-one. In the above 
example Stumps is not significantly captured by the whole ordination, but it is strongly 
negatively associating with Dim1. Percentage on non-eucalyptus trees is also strongly 
associating with Dim1, but in the other direction. Non-eucalyptus trees in the study area 
are often high-value timber. It may not be a coincidence that the more stumps there are, 
the fewer non-eucalyptus trees there are. Trees like blackwoods may have been be 
selectively logged out of a forest stand, leaving only stumps behind. This relationship 
wouldn't be interpretable if we fixate on interpreting both axes together. 
 
Of the output from the  
 
Let's move the MDS1 and MDS2 (Dim1 and Dim2) values back into the dataset for 
visualisation and statistical use. 
	
female$mds1<- female.mds$points[,1] 
female$mds2<- female.mds$points[,2] 
	
par(mfrow=c(1,2)) # set plotting window to a 1x2 array 
boxplot(mds1~HABITAT,data=female, col=c("white","grey")) 
boxplot(mds2~HABITAT,data=female, col=c("white","grey")) 
par(mfrow=c(1,1)) # return plotting window to a 1x1 array 
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t.test(mds1~HABITAT,data=female) 
t.test(mds2~HABITAT,data=female) 
	

	
	
The	 interpretation	 is	 that	 there	 is	 a	 significant	 difference	 between	 Continuous	 and	
Fragmented	forest	for	mds1	(P	=	0.005),	but	there	is	no	significant	difference	for	MDS1	(P	=	
0.248).	In	order	to	understand	what	this	means,	we	have	to	look	at	the	envdist	table	and	the	
boxplot	on	the	previous	page.	Continuous	forest	fragments	have	high	values	of	MDS1	and	
fragmented	forest	sites	had	lower	values	of	MDS1,	on	average.	High	values	of	MDS1	associate	
with	more	non-eucalyptus	trees	(pcNONEUC),	more	shrub	species	and	fewer	stumps	(all	have	
cosine	values	stronger	than	0.3).	There	 is	no	strong	association	with	area	at	breast	height	
(ABH),	median	area	at	breast	height	(median.ABH)	and	shrub	count.	The	implication	is	that	
continuous	forest	sites	have	significantly	greater	percentages	of	non-eucalyptus	trees,	more	
shrubs	species	richness	and	fewer	stumps	than	do	forest	fragments.		
	
  

RESULT 
 
> t.test(mds1~HABITAT,data=female) 
 
 Welch Two Sample t-test 
 
data:  mds1 by HABITAT 
t = 2.9138, df = 54.133, p-value = 0.005181 
alternative hypothesis: true difference in means is not equal 
to 0 
95 percent confidence interval: 
 0.2646574 1.4320055 
sample estimates: 
mean in group C mean in group F  
      0.4241657      -0.4241657  
 
> t.test(mds2~HABITAT,data=female) 
 
 Welch Two Sample t-test 
 
data:  mds2 by HABITAT 
t = 1.1684, df = 57.068, p-value = 0.2475 
alternative hypothesis: true difference in means is not equal 
to 0 
95 percent confidence interval: 
 -0.0983413  0.3738719 
sample estimates: 
mean in group C mean in group F  
     0.06888266     -0.06888266 
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Now, onto plotting the NMDS as an ordination. We'll do this for females only at this stage, 
as the Males and Females are going to look identical, as we are simply using the presence 
of antechinus at a site as a guide to where environmental variables were recorded. The 
groups are fragmented and continuous forest habitats. 
 

An NMDS ordination plot using polygons 
 
plot(female.mds$points,type="n") # blank canvas plot 
ordihull(female.mds,groups=female$HABITAT, draw="polygon", 
col="grey90", label=F) # Polygons with no labels 
 
text(female.mds$points,lab=female$HABITAT,col="gray", adj =1.5)  
# Text added in grey with a slight offset of 1.5 characters 
 
female$HABITAT<-as.factor(female$HABITAT) 
# Change habitat to a factor to get the next step to work 
 
points(female.mds$points,pch=16,col=as.numeric(female$HABITAT))  
# Add coloured points, using point character 16 (solid circle) 

	
The	interpretation	is	similar	to	any	other	ordination:	the	greater	the	overlap	of	polygons	the	
more	similar	(overall)	are	the	underlying	variables	measured	at	the	sites.	 	
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An NMDS ordination plot using ellipses 
The ehull command draws an ellipse around all points. The sd command draws an ellipse 
around the standard devition of the points. The se command draws an ellipse around the 
standard error of the points. I've left out the text labels, as they cluttered the figure 
enough to make it hard to read, but they could be added back in by removing the hash. 
 
plot(female.mds$points,type="n") 
 
ordiellipse(female.mds,groups=female$HABITAT,alpha = 
50,draw="polygon",col=c("grey70","rosybrown2"),label=F,kind="ehull") 
 
ordiellipse(female.mds,groups=female$HABITAT,alpha = 
50,draw="polygon",col=c("grey70","rosybrown2"),label=F,kind="sd") 
 
ordiellipse(female.mds,groups=female$HABITAT,alpha = 
50,draw="polygon",col=c("grey70","rosybrown2"),label=F,kind="se") 
 
text(female.mds$points,lab=female$HABITAT,col="gray", adj = 1.5)  
# Text added with a 1.5 offset 
 
female$HABITAT<-as.factor(female$HABITAT) 
points(female.mds$points,pch=16,col=as.numeric(female$HABITAT)) # Add 
coloured points, using point character 16 (solid circle) 
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An NMDS plot using isobars 
Finally, we might be interested in placing a continuous variable onto the NMDS. In the 
case of the antechinus we have a measure of abundance taken from a square root of 
captures per trap (sqrtAGILIS). We can plot this for males and females: the figures should 
be different because although male and female antechinus were present at the same 
sites, they were present at different levels of abundance. 
 
ordisurf(female.mds, female$sqrtAGILIS, main="", col="forestgreen") 
female$HABITAT<-as.factor(female$HABITAT) 
points(female.mds$points, pch=16, col=as.numeric(female$HABITAT)) # Add 
coloured points using point character 16 (solid circle) 
	

	
 
The isobars for females suggest a fairly flat abundance with a peak abundance of 
0.3145811 sqrtAGILIS towards the middle of the distribution, not clearly in the 
fragmented (red) or continuous (black) forest. 
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The same plot for males… 
 
ordisurf(male.mds, male$sqrtAGILIS, main="", col="forestgreen") 
male$HABITAT<-as.factor(male$HABITAT) 
points(male.mds$points, pch=16,col=as.numeric(male$HABITAT)) # Add 
points using point character 16 (solid circle) 

 

 
 

The	isobars	for	males	has	a	bit	more	steepness	to	it.	There's	a	clear	peak	of	0.48	in	the	
continuous	forested	sites	(black),	and	a	trough	of	0.30	in	the	fragmented	sites	(red).	
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ANOSIM 
An Analysis of Similarity is sometimes reported with a NMDS because it is based off the 
same fundamental methodology of generating a dissimilarity (or similarity) matrix. 
Continuing from the example above, we already created a distances matrix, but if you 
had not done so, you need to do this as a first step. 
 
female.dist<-vegdist(female.y, method = "bray") 
 
Create the ANOSIM 
female.ano<-anosim(female.dist,female$HABITAT)  # Run an ANOSIM 
 
Look at the results of the ANOSIM 
summary(female.ano) # examine ANOSIM 
 

 
 
We have a significant result (P = 0.001) but, ANOSIMs are extremely powerful to the 
point of inflating Type I error. They tend to be significant more often than not. The 
relatively low R of 0.1431 requires a bit of caution with the interpretation. 
 
  

RESULT 
 
Call: 
anosim(dat = female.dist, grouping = female$HABITAT)  
Dissimilarity: bray  
 
ANOSIM statistic R: 0.1431  
      Significance: 0.001  
 
Permutation: free 
Number of permutations: 999 
 
Upper quantiles of permutations (null model): 
   90%    95%  97.5%    99%  
0.0269 0.0386 0.0545 0.0754  
 
Dissimilarity ranks between and within classes: 
        0%    25% 50%     75% 100%   N 
Between  1 512.75 981 1387.25 1770 900 
C        4 360.50 670 1042.50 1751 435 
F        2 461.00 978 1399.50 1769 435 
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Plot results of the ANOSIM 
plot(female.ano) 
 

 
 
The notches in the boxplots are read as per standard notched boxplots: if notches 
overlap horizontally, then the groups are not different. The notches do not overlap for 
continuous and fragmented forest, so we can consider these different habitat structures 
based on the environmental variables measured and included. 
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Survival analysis 
Survival analysis deals with the time elapsed before an event occurs. In classically 
statistics, this is death (time to death after exposure to a poison, time to death when 
exposed to cold etc), but the analysis can be applied to any fixed event, such as the time 
it takes chicks in a nest to fledge (leave the nest) or the time it takes an animal to find 
hidden food in an enclosure. 
 
Survival analysis therefore has two response variables. Whether or not the event occurred 
(1 = YES, 0 = NO) and the time elapsed before the time occurred. If trials are for a limited 
time (in the food searching experiment we might only run each trial to 45 min) then an 
animal that reaches the end of the trial without finding food would have a score of 0, 45 
min. An animal that found the food in 10.5 min would have a score of 1, 10.5 min, and 
so on. 
 

	
 
 

Parametric Survival analysis 
For some reason we have decided that we really want to know whether agile antechinus 
(left) or yellow-footed antechinus (right) are better at running through mazes. We have 
three mazes (treatments T1, T2 and T3) and 30 individuals of each species. 
 
Import the data and have a look at it. 
maze <- read.table('survival.csv',header=T, sep = ',') 
 
Look at the whole dataset so that you can see how it is laid out. 
maze 
 
The first thing we need to work out here are out predictor and response variables. In each 
trial (maze 1, maze 2, maze 3), there are two predictor variables: 
• Did the event happen? (categorical, yes or no) 
• How long did it take, if the event happened? (continuous measurement of time) 

 
We have (potentially) two predictor variables: 
• Species (a two level factor) 
• Body size (continuous) 
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RESULT 
 
> maze 
    SPECIES INDIVIDUAL MASS.g T1.goal T1.time T2.goal T2.time T3.goal T3.time 
1    agilis         A1     33       1     5.1       1    11.2       0    45.0 
2    agilis        A10     33       1     2.4       1    11.2       1     2.1 
3    agilis        A11     30       1    33.7       1    10.2       0    45.0 
4    agilis        A12     31       1     9.6       1     1.7       1     2.3 
5    agilis        A13     30       1     4.0       1    18.3       0    45.0 
6    agilis        A14     29       1     2.5       1     1.6       1     9.8 
7    agilis        A15     30       1     1.2       1     9.4       0    45.0 
8    agilis        A16     34       1     4.3       1     4.4       0    45.0 
9    agilis        A17     32       1    35.0       1     3.2       0    45.0 
10   agilis        A18     34       1    30.8       1    16.2       1     9.1 
11   agilis        A19     30       1    26.5       1     2.1       1     4.2 
12   agilis         A2     33       1     1.9       0    45.0       1     9.4 
13   agilis        A20     32       1     5.6       1    44.2       1     3.3 
14   agilis        A21     29       1     4.3       1     2.3       1    19.2 
15   agilis        A22     32       1     7.6       1     5.1       1     2.2 
16   agilis        A23     37       0    45.0       1     2.1       0    45.0 
17   agilis        A24     29       1    12.4       1    10.5       1     2.6 
18   agilis        A25     28       1    14.0       1     0.6       0    45.0 
19   agilis        A26     34       1     2.4       1     4.7       0    45.0 
20   agilis        A27     30       1    33.7       1     4.2       1    15.3 
21   agilis        A28     28       1    25.4       1     1.6       1    12.1 
22   agilis        A29     32       1    17.2       1    15.0       1     9.3 
23   agilis         A3     32       1     6.2       1    34.3       1     3.7 
24   agilis        A30     34       1    37.5       1    10.8       1     3.1 
25   agilis         A4     30       1    12.4       1     8.8       1    29.3 
26   agilis         A5     34       1     9.6       1    18.8       1     0.3 
27   agilis         A6     34       1    14.4       1    13.3       1    10.8 
28   agilis         A7     35       0    45.0       1    17.6       0    45.0 
29   agilis         A8     30       0    45.0       1     5.8       1     2.0 
30   agilis         A9     31       1     0.9       1    24.2       1    16.5 
31 flavipes         F1     35       1    20.8       1     0.8       0    45.0 
32 flavipes        F10     34       0    45.0       0    45.0       0    45.0 
33 flavipes        F11     32       0    45.0       1    10.1       0    45.0 
34 flavipes        F12     36       1     8.5       1     2.3       0    45.0 
35 flavipes        F13     30       1     6.8       0    45.0       0    45.0 
36 flavipes        F14     30       1     5.0       1    28.2       0    45.0 
37 flavipes        F15     32       1    11.7       0    45.0       0    45.0 
38 flavipes        F16     30       1     8.9       0    45.0       0    45.0 
39 flavipes        F17     30       1    40.9       0    45.0       1    42.5 
40 flavipes        F18     32       0    45.0       1     5.1       0    45.0 
41 flavipes        F19     33       1     5.9       1     8.1       0    45.0 
42 flavipes         F2     34       0    45.0       1     8.0       0    45.0 
43 flavipes        F20     30       1     5.2       0    45.0       0    45.0 
44 flavipes        F21     43       1    43.2       0    45.0       0    45.0 
45 flavipes        F22     32       0    45.0       1    31.0       0    45.0 
46 flavipes        F23     34       1     7.8       1    17.6       1    15.6 
47 flavipes        F24     31       0    45.0       1     4.5       0    45.0 
48 flavipes        F25     33       0    45.0       1    22.3       0    45.0 
49 flavipes        F26     33       1    29.2       0    45.0       1    23.2 
50 flavipes        F27     27       1     9.3       1    14.6       0    45.0 
51 flavipes        F28     35       1    38.6       0    45.0       0    45.0 
52 flavipes        F29     32       0    45.0       1    28.7       0    45.0 
53 flavipes         F3     30       0    45.0       1     5.8       1     8.8 
54 flavipes        F30     40       1    29.9       1    10.5       0    45.0 
55 flavipes         F4     34       1    36.4       0    45.0       0    45.0 
56 flavipes         F5     33       1    42.0       1     5.4       0    45.0 
57 flavipes         F6     30       1    32.5       0    45.0       0    45.0 
58 flavipes         F7     34       0    45.0       0    45.0       0    45.0 
59 flavipes         F8     34       0    45.0       0    45.0       0    45.0 
60 flavipes         F9     34       0    45.0       1    13.2       0    45.0 



	
	

275	

We’re going to have to use a package in R to do a survival analysis. The basic R setup 
doesn’t support survival analyses very well: 
library(survival) 
 
Create a survival object  
maze.T1.surv <- with(maze, Surv(T1.time,T1.goal)) 
 
From this we can create a survival curve. We will set colours for the two species. R always 
sets things like colours alphabetically, so first we’ll check the categories: 
 

 
 
And now the plot: 
maze.fit <- survfit(maze.T1.surv~SPECIES,data=maze) 
plot(maze.fit, col=c("grey","black"), lty=1, lwd=2)	
 
lty="dashed" instructs R to make the lines dashed. You can try different colours if you 
like. 
 

 

RESULT 
 
levels(maze$SPECIES) 
[1] "agilis"   "flavipes" 
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Now we can run a survival test. There are a number of different possible tests. They 
shouldn’t vary a lot in the final P-values, though, so we're going to start by applying one 
of the more straightforward tests. 
 
survdiff(maze.T1.surv~SPECIES,data=maze) 
 

	
 
This suggests that there is a difference between the species, but, we might be concerned 
that body size is having an effect here too. Perhaps larger antechinus explore more 
quickly or vice versa. Because we are adding a continuous variable, we need to use 
regression. Because we are using a parametric approach here, we need to build a number 
of different models and look for the best fit to various distributions: 
 
surv.reg.W <- survreg(maze.T1.surv ~ SPECIES * MASS.g, data = 
maze, dist = "weibull") 
 
surv.reg.E1 <- survreg(maze.T1.surv ~ SPECIES * MASS.g, data = 
maze, dist = "exponential") 
 
surv.reg.E2 <- survreg(maze.T1.surv ~ SPECIES * MASS.g, data = 
maze, dist = "extreme") 
 
surv.reg.G <- survreg(maze.T1.surv ~ SPECIES * MASS.g, data = 
maze, dist = "gaussian") 
 
surv.reg.L <- survreg(maze.T1.surv ~ SPECIES * MASS.g, data = 
maze, dist = "logistic") 
 
We can use an anova function to compare models. 
 
Pick the model with the lowest -2*LL (this is related to the notion of information 
criterion and is similar to how an AIC is used. We'll look at AICs in a subsequent section, 
but for now all you need to know is that the lower -2*LL, the better the model). 
  

RESULT 
 
Call: 
survdiff(formula = maze.T1.surv ~ SPECIES, data = maze) 
 
                  N Observed Expected (O-E)^2/E (O-E)^2/V 
SPECIES=agilis   30       27     16.3      6.96      11.4 
SPECIES=flavipes 30       18     28.7      3.97      11.4 
 
 Chisq= 11.4  on 1 degrees of freedom, p= 0.00072 
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anova(surv.reg.W, surv.reg.E1, surv.reg.E2, surv.reg.G, 
surv.reg.L) 
	

	
 
Both the Weibull and exponential distributions appear to be similarly good fits. The 
Weibull does have a marginally lower AIC, so we'll pick it as the distribution to use 
(Weibull is a quite flexible form of distribution, and you'll tend to find it is often the best, 
or at least in the top couple options). 
 
summary(surv.reg.W) 
	

	
 
The interaction is not significant, so it can be removed. Re-run with model without the 
interaction term. 
 
  

RESULT 
 
> anova(surv.reg.W, surv.reg.E1, surv.reg.E2, surv.reg.G, surv.reg.L) 
             Terms Resid. Df    -2*LL Test Df     Deviance  Pr(>Chi) 
1 SPECIES * MASS.g        55 386.9572      NA           NA        NA 
2 SPECIES * MASS.g        56 386.9938    = -1  -0.03661785 0.8482452 
3 SPECIES * MASS.g        55 430.7299    =  1 -43.73603636        NA 
4 SPECIES * MASS.g        55 421.5351    =  0   9.19475192        NA 
5 SPECIES * MASS.g        55 424.2975    =  0  -2.76243548        NA 

RESULT 
 
> summary(surv.reg.W) 
 
Call: 
survreg(formula = maze.T1.surv ~ SPECIES * MASS.g, data = maze,  
    dist = "weibull") 
                         Value Std. Error      z     p 
(Intercept)            -0.2431     2.4104 -0.101 0.920 
SPECIESflavipes         3.1758     3.6509  0.870 0.384 
MASS.g                  0.0996     0.0764  1.303 0.193 
SPECIESflavipes:MASS.g -0.0696     0.1125 -0.618 0.536 
Log(scale)             -0.0242     0.1258 -0.192 0.848 
 
Scale= 0.976  
 
Weibull distribution 
Loglik(model)= -193.5   Loglik(intercept only)= -200.1 
 Chisq= 13.32 on 3 degrees of freedom, p= 0.004  
Number of Newton-Raphson Iterations: 5  
n= 60 
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surv.reg.W<- survreg(maze.T1.surv ~ SPECIES + MASS.g, data = 
maze, dist = "weibull") 
summary(surv.reg.W) 
	

	
 
Species is having a significant effect, but mass is not. The ‘value’ and ‘Std.Error’ is the 
effect size ± standard error. The final result appears to be that flavipes take significantly 
longer to solve a maze than do agilis. 
 
At this point it would also be senibsle to check the basic assumptions of the model. There 
is no straightforward way to generate a standard set of diagnostic plots from a survival 
regression, so we'll simply extract the residuals and use them to check for normality and 
equal variances. If the model is not following the specified distribution, we would expect 
to see a non-normal distribution of residuals. 
  

RESULT 
 
> summary(surv.reg.W) 
 
Call: 
survreg(formula = maze.T1.surv ~ SPECIES + MASS.g, data = maze,  
    dist = "weibull") 
                  Value Std. Error      z       p 
(Intercept)      0.7019     1.8351  0.382 0.70210 
SPECIESflavipes  0.9302     0.3139  2.964 0.00304 
MASS.g           0.0696     0.0577  1.206 0.22796 
Log(scale)      -0.0216     0.1255 -0.172 0.86356 
 
Scale= 0.979  
 
Weibull distribution 
Loglik(model)= -193.7   Loglik(intercept only)= -200.1 
 Chisq= 12.95 on 2 degrees of freedom, p= 0.0015  
Number of Newton-Raphson Iterations: 5  
n= 60 
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First, extract the residuals of the model and drop them into an object called y. 
 
y <- resid(surv.reg.W) 
 
Now, check the histogram of the residuals. 
hist(y) 
 

 
 
Now try a qqplot: 
qqnorm(y) 
qqline(y, probs = c(0.25, 0.75), col = "red") 
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The distribution looks a little odd, but let's try a Shapiro-Wilk's test as well. 
 
shapiro.test(y) 
 

 
 
Given that Shapiro-Wilk's tests are quite aggressive, a P value of 0.08 is probably 
acceptable. We'll continue with the parametric analysis of this trial, but if you were to 
obtain a Shapiro-Wilk's result of P < 0.01 it is probably worth also checking the non-
parametric Cox's option as well. If the results differ substantially, the non-parametric 
Cox's probably hazard test is likely the better option. 
 
We can also have a go at generating something akin to a residuals vs fitted plot, but we 
have to extract the fitted values from a dummy linear model manually. First, drop the 
residuals into the dataset. 
maze$y <- resid(surv.reg.W) 
 
Create a dummy linear model to obtain fitted values. Drop these into the dataset too. 
fit.lm<-lm(T1.time ~ SPECIES + MASS.g,data=maze) 
maze$fitted<-fitted.values(fit.lm) 
 
Plot the residuals against the fitted values. 
plot(y~fitted,data=maze) 

 
As with standard residuals versus fitted plots, we would be concerned if there was a clear 
'wedge' or 'arrowhead' shape in the cloud of data points. That doesn't seem to be the 
case here, so at this point we will move along with the analysis. 

RESULT 
 
> shapiro.test(y) 
 
 Shapiro-Wilk normality test 
 
data:  y 
W = 0.96544, p-value = 0.08706 
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Figure	X.	Survival	analysis	plot	for	Maze	1.	Grey:	A.	agilis.	Black:	A.	flavipes.	
	

	

	
Figure	X.	Survival	analysis	plot	for	Maze	2.	Grey:	A.	agilis.	Black:	A.	flavipes.	

	
	

	
Figure	X.	Survival	analysis	plot	for	Maze	3.	Grey:	A.	agilis.	Black:	A.	flavipes.	
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Non-parametric Cox Probable Hazards Survival Analysis 
Another option is to try a non-parametric Cox's Probable Hazard (Cox PH) survival 
analysis. Like all non-parametric tests, Cox's PH will (very slightly) inflate your Type II 
error, which is probably the reason it tends to be avoided in biological sciences. However, 
it is a very popular choice in medical studies, and will tend to give a (more or less) similar 
result to a properly fitted parametric test. 
 
maze.T1.surv <- with(maze, Surv(T1.time,T1.goal)) 
 
coxph(maze.T1.surv ~ SPECIES * MASS.g, data = maze) 
 

 
 
Remove the non-significant interaction term. 
 
coxph(maze.T1.surv ~ SPECIES + MASS.g, data = maze) 
 

 
 
  

RESULT 
 
Call: 
coxph(formula = maze.T1.surv ~ SPECIES * MASS.g, data = maze) 
 
                          coef exp(coef) se(coef)     z    p 
SPECIESflavipes        -3.6018    0.0273   3.7370 -0.96 0.34 
MASS.g                 -0.1075    0.8981   0.0797 -1.35 0.18 
SPECIESflavipes:MASS.g  0.0819    1.0853   0.1151  0.71 0.48 
 
Likelihood ratio test=13  on 3 df, p=0.00458 
n= 60, number of events= 45  
 

RESULT 
 
Call: 
coxph(formula = maze.T1.surv ~ SPECIES + MASS.g, data = maze) 
 
                   coef exp(coef) se(coef)     z      p 
SPECIESflavipes -0.9550    0.3848   0.3182 -3.00 0.0027 
MASS.g          -0.0710    0.9315   0.0596 -1.19 0.2337 
 
Likelihood ratio test=12.5  on 2 df, p=0.0019 
n= 60, number of events= 45 
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Mixed Effects Cox Probable Hazards Survival Analysis 
If you need to include a random effect, there is an option in the 'coxme' package. There 
is no parametric mixed effects model survival analysis (so far as I am aware) in R, so 
where random effects are needed to control for pseudoreplication, you will need to use 
the non-parametric option (although, this is only non-parametric in a sense: the model 
assumes a Gaussian distribution for the random effect). 
 
The below code is similar to what we have been running above, except that we have 
included a random effect 'T1.time.of.day' because some trials were run in the evening 
and other trials were in the afternoon, and we are concerned this might affect behaviour 
as antechinus are nocturnal. 
 
maze <- read.table('survival.csv',header=T, sep = ',') 
 
fit.coxme <- coxme(Surv(T1.time,T1.goal) ~ SPECIES + MASS.g + 
(1|T1.time.of.day), data=maze) 
 
fit.coxme # no need to use 'summary' 
 

 
 

	  

RESULT 
 
Cox mixed-effects model fit by maximum likelihood 
  Data: maze 
  events, n = 45, 60 
  Iterations= 5 28  
                    NULL Integrated    Fitted 
Log-likelihood -160.7289  -154.1803 -153.4261 
 
                  Chisq  df         p  AIC  BIC 
Integrated loglik 13.10 3.0 0.0044309 7.10 1.68 
 Penalized loglik 14.61 2.6 0.0014141 9.41 4.71 
 
Model:  Surv(T1.time, T1.goal) ~ SPECIES + MASS.g + (1 | 
T1.time.of.day)  
Fixed coefficients 
                       coef exp(coef)   se(coef)     z      p 
SPECIESflavipes -0.97516716 0.3771293 0.31923006 -3.05 0.0023 
MASS.g          -0.07118842 0.9312864 0.05916841 -1.20 0.2300 
 
Random effects 
 Group          Variable  Std Dev    Variance   
 T1.time.of.day Intercept 0.26328661 0.06931984 
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Repeatabilities 
Repeatabilities are used to determine whether a sequence of measurements or values 
are showing a tendency towards similarity or 'repeatableness' within groups. One of the 
classic areas in which repeatability is used is when determining whether bird nestlings 
within nests are showing repeatability for a given trait, such as mass, haemoglobin, 
parasite load or similar. Another field where repeatability might be used would be to run 
animals through several behavioural tests, maybe days or weeks apart, to see whether 
there is repeatability at the level of the individual animal in terms of its response (i.e. 
lizard response to a novel object). 
 
In this example, however, we will be using nestlings, as we have a nestling dataset 
available. 
 
Import the dataset swallow-nestlings-blood.csv (remembering to change your 
working directory if needed). This is an actual dataset from an honours project. 
 
nestlings <- read.table('swallows-nestlings-blood.csv', 
header=T,sep=',') 
 
Check the data: 
head(nestlings) 
str(nestlings) 
 
There may be missing data because this is a real dataset and sometimes birds escape 
before they are fully measured. A quick but drastic way to remove all lines that have 
missing data uses this code: 
 
nestlings<-na.omit(nestlings) 
 
We'll use a repeatability library to calculate repeatabilities. 
 
install.packages("rptR") 
library(rptR) 
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Repeatability: Normal distribution of response 
The rptR package allows for determining repeatability of Gaussian (normal), Binary, 
Proportion and Poisson distributed response data. The following code will generate a 
bootstrapped repeatability for a Gaussian distributed variable. Here, we will check 
whether Hct is repeatable by nest. 
 
rpt(Hct ~ (1|NEST.ID), grname="NEST.ID", datatype="Gaussian", 
data=nestlings) 
	

	
	
Not that the datatype options are "Gaussian", "Binary", "Proportion" and 
"count" (i.e. not binomial or poisson, and count is with a lower case 'c'). 
 
A repeatability can be read something like a correlation coefficient, with high values 
indicating a strong degree of repeatability. The repeatability for Hct by nest is 0.408 and 
it is significantly different to a repeatability of zero (P < 0.001). Note that the 95% 
confidence interval runs from 0.318 to 0.489. Because it does not include zero, we can 
state with a 95% level of confidence that the repeatability is not zero. 
 

Adjusting for uneven sample size 
When the number of samples per group is uneven some authors like to apply a penalty 
to the repeatability value to take into account that unbalanced sample sizes introduce 
additional uncertainty into the data. This is called a repeatability adjustedment (n0). This 
quote from Nakagawa & Schielzeth (Repeatability for Gaussian and non-Gaussian data: a 
practical guide for biologists; 2010) explains the underlying reasoning: 
 

The correction term n0 is equal to the sample size per individual if sample sizes are 
equal for all groups, but n0 is lower than the average sample size if sample sizes 
vary among individuals. This downward correction accounts for the overestimation 
of variance among smaller groups compared to larger groups that is a characteristic 
of least-squares estimation such as ANOVA 

 
  

RESULT 
 

Repeatability for NEST.ID 
R  = 0.408 
SE = 0.043 
CI = [0.318, 0.489] 
P  = 3.35e-19 [LRT] 
     NA [Permutation] 
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There is no library that compute the n0, so we have to calculate it using some coding: 
 
# compute n0, the repeatability adjustment 
 
n <- as.data.frame(table(nestlings$NEST.ID)) 
k <- nrow(n) 
N <- sum(n$Freq) 
n0 <- (N-(sum(n$Freq^2)/N))/(k-1) 
n0 
	

	
	
The next step is to use the n0 to adjust the repeatability measurement we obtained 
above. 
 
# compute the adjusted repeatability 
R <- 0.408 
Rn <- R/(R+(1-R)/n0) 
Rn 
	

 
 
The adjustment has actually increased the repeatability. We can take this to indicate that 
there is no particular problem with uneven sample sizes in this dataset. If the 
repeatability was substantially decreased, we might wish to interpret the result with 
some caution. Note that if you do have even sample sizes (i.e. the same number of 
nestlings in all nests) then this final adjustment step is not necessary. 
 
	 	

RESULT 
 

[1] 3.29088 
 

RESULT 
 

[1] 0.6940061 
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Repeatability: Others distribution of response 
In order to check repeatability of other types of distribution, we would simply change the 
distribution parameter: 
 
Poisson (counts) 
rpt(RESPONSE ~ (1|GROUP), grname = "GROUP", 
datatype="count",data=nestlings) 
 
Binomial (binary) 
rpt(RESPONSE ~ (1|GROUP), grname = "GROUP", 
datatype="Binary",data=nestlings) 
 
Proportion (percentages) 
rpt(RESPONSE ~ (1|GROUP), grname = "GROUP", 
datatype="Proportion",data=nestlings)	
 
The rptR package actually allows for some quite sophisticated models to be tests for 
repeatability. Use the ?rpt command and scroll down to the examples provided to get 
a feel for the variety and types of models that can be accommodated. 
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Species Accumulation Curves 
The concept behind a species accumulation curve (SAC) is actually quite straightforward. 
Imagine you were hired to go into a forest and count all the species of frogs. Each day 
you go out, looking for more frog species. To start with you would get one, two or three 
new species each day, but over time you'd find fewer and fewer new species. Eventually 
you'd be looking for a few days, or a week or a month and not find any new species. At 
this point, we can probably assume you've found all or most of the frog species in the 
forest. This doesn't necessarily mean you've found all the species. Some might be cryptic 
and hard to see. Some might be inactive at the time of year you are looking. However, 
broadly speaking we can build a curve from the number of new species you find each 
day, and check where it levels out to get an estimate of how many species are probably 
present. 
 

Assumptions & Data Set-up 
Species accumulation curves do not have any testable assumptions per se, but they can 
provide meaningless or misleading results if the experimental design is faulty. The most 
common reason for faulty design is sampling across a clear, heterogeneous boundary. 
What might cause such a boundary? Imagine you are identifying frog species, and you 
are collecting data over several weeks. If it was dry for most of the time, and then it rains 
for three days, then returns to dry weather, you could easily find that there is a clear 
difference between frogs that you identified during the dry and wet weather. The same 
could happen if you cross a geographic boundary. If you are running transects through 
forest, then cross into a swamp, the species assortment would probably suddenly jump. 
 
Mostly, avoiding problems of heterogeneity is a matter of good design and thinking 
carefully about field sites. When you come to plotting the data, a heterogeneous 
boundary will be obvious as a 'jump' in the data. If the curve is smooth, and then jumps 
or kinks upwards you may have a heterogeneity problem. How to cope with this is trickier. 
To some degree, methods like the random bootstrapping approach smooth out these 
kinks and assume the whole environment is homogeneous, and is some instances this 
may actually be acceptable. Otherwise, it may be necessary to split the data (i.e. wet and 
dry days, forest and swamp transects). 
 
Gradual changes across a sampling range are less problematic than sudden jumps, 
although keep in mind that by applying a species accumulation curve you are assuming 
that the environment does represent a coherent whole. It may be possible to run a 
transects 3km up a mountainside and see only gradual changes in species assortment, 
but it would still be questionable whether or not such a dataset might be better split into 
altitudinal regions. The clearest indicator that you are running collection through several 
different and gradually changing environments is that you will not see a levelling out of 
the curve. It will just continue to increase. Imagine if you ran a sample all the way across 
a continent. It's quite possible the curve would never really level out, because you are 
always encountering new species.  
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Measuring Effort 
Species accumulation curves require some sort of index of effort. This could be quadrats 
along one or more transect lines, or days spent looking for frogs, or number of new 
species per individual counted (i.e. new frog species per frog). 
 
In the example we'll look at the data was collected in Borneo, examining morphotypes 
of understory plants. The data was collected in six transects through the rainforest with 
nine quadrats per transect. The biologists were interesting in identifying whether there 
might be a change in species richness near the tourist boardwalks in Mulu Forest Park. 
To this end, they positioned Quadrat 1 (1x1m) immediately next to the boardwalk, and 
then ran a transect at a right angle into the forest, so that Quadrat 9 was always the 
furthest quadrat and always the same distance into the forest. 
 
We will import quite a few datasets. The first dataset records presence and absence of a 
species in a given quadrat. 
 
borneo <- read.table('borneo_binary.csv',header=T, sep = ',')	
View(borneo) 
 
This is not easily used for species accumulation curves, because the quadrat and transect 
will require extra coding to get around. Instead we'll just delete those columns and work 
with a matrix of the data. 
 
borneo <- read.table('borneo_presabs.csv',header=T, sep = ',') 
View(borneo) 
 
We've also added the occurrences together and grouped these by quadrat: 
 
borneo.out <- read.table(borneo_away_fr_boardwalk.csv',header=T, 
sep = ',') 
 
And split these by transect: 
 
transect1 <- read.table('borneo_transect1.csv',header=T, sep = ',') 
transect2 <- read.table('borneo_transect2.csv',header=T, sep = ',') 
transect3 <- read.table('borneo_transect3.csv',header=T, sep = ',') 
transect4 <- read.table('borneo_transect4.csv',header=T, sep = ',') 
transect5 <- read.table('borneo_transect5.csv',header=T, sep = ',') 
transect6 <- read.table('borneo_transect6.csv',header=T, sep = ',') 
 
Finally, because we are interested in whether there may be a different pattern if we 
reverse the data (i.e. flip the transects and run them from the forest towards the 
boardwalk) we have an inverted dataset as well: 
 
borneo.in <- read.table('borneo_towards_boardwalk.csv',header=T, 
sep = ',') 
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Most of the code we will be using is from the vegan package, so you will need to load it 
now if you don't have it already installed and loaded. 
 
install.packages("vegan") 
library(vegan) 
 
Let's start by applying some different methods for generating species accumulation 
curves. The method collector will add data in the order it was collected. The method 
random is a form of bootstrapping and adds data in a random order. The method exact 
finds the expected mean species richness and will only work if the data is in a 
presence/absence format (the other methods will accept accumulated species counts). 
The method coleman finds the expected species richness following Coleman et al. 
(1982) and rarefaction finds the mean when accumulating individuals instead of 
sites. If you data is already presented in the form of new species per individual, then you 
have already set it up as a rarefaction analysis by default. 
 
Let's work with the presence/absence data first. 
sp1 <- specaccum(borneo, "random") 
sp2 <- specaccum(borneo, "collector") 
sp3 <- specaccum(borneo, "exact") 
sp4 <- specaccum(borneo, "coleman") 
sp5 <- specaccum(borneo, "rarefaction") 
 

Graphing species accumulation curves 
 
par(mfrow=c(5,1)) # Run this one line at a time 
 
plot(sp1) 
mtext("Random", side = 3, adj = 0, cex = 1, col = "black") 
 
plot(sp2) 
mtext("Collector", side = 3, adj = 0, cex = 1, col = "black") 
 
plot(sp3) 
mtext("Exact", side = 3, adj = 0, cex = 1, col = "black") 
 
plot(sp4) 
mtext("Coleman", side = 3, adj = 0, cex = 1, col = "black") 
 
plot(sp5) 
mtext("Rarefaction", side = 3, adj = 0, cex = 1, col = "black") 
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Graphing species accumulation curves: adding colour 
 
Let's try adding some colour and creating some nicer looking graphs. 
 
par(mfrow=c(5,1)) 
 
plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0, 
ci.col="lightblue") 
mtext("Random", side = 3, adj = 0, cex = 1, col = "black") 
 
plot(sp2, ci.type="poly", col="blue", lwd=2, ci.lty=0, 
ci.col="lightblue") 
mtext("Collector", side = 3, adj = 0, cex = 1, col = "black") 
 
plot(sp3, ci.type="poly", col="blue", lwd=2, ci.lty=0, 
ci.col="lightblue") 
mtext("Exact", side = 3, adj = 0, cex = 1, col = "black") 
 
plot(sp4, ci.type="poly", col="blue", lwd=2, ci.lty=0, 
ci.col="lightblue") 
mtext("Coleman", side = 3, adj = 0, cex = 1, col = "black") 
 
plot(sp5, ci.type="poly", col="blue", lwd=2, ci.lty=0, 
ci.col="lightblue") 
mtext("Rarefaction", side = 3, adj = 0, cex = 1, col = 
"black") 
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The species accumulation curves are looking quite nice, but we have a problem, which 
is that R thinks the whole 6 transects by 9 quadrats is a single collecting event, giving 
over 50 samples. We can sum the species observations together, and organise them by 
transects, but if we do this the method exact will no longer work. That's okay, as we 
will focus on using the methods random and collector from here on. 
 
Let's start off by comparing transects. 
 

Using the random method (by transect) 
 
# RANDOM 
 
par(mfrow=c(3,2)) 
 
sp1 <- specaccum(transect1, "random") 
plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0, 
ci.col="lightblue", ylim=c(0,25)) 
mtext("Transect 1", side = 3, adj = 0, cex = 1, col = "black") 
 
sp1 <- specaccum(transect2, "random") 
plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0, 
ci.col="lightblue", ylim=c(0,25)) 
mtext("Transect 2", side = 3, adj = 0, cex = 1, col = "black") 
 
sp1 <- specaccum(transect3, "random") 
plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0, 
ci.col="lightblue", ylim=c(0,25)) 
mtext("Transect 3", side = 3, adj = 0, cex = 1, col = "black") 
 
sp1 <- specaccum(transect4, "random") 
plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0, 
ci.col="lightblue", ylim=c(0,25)) 
mtext("Transect 4", side = 3, adj = 0, cex = 1, col = "black") 
 
sp1 <- specaccum(transect5, "random") 
plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0, 
ci.col="lightblue", ylim=c(0,25)) 
mtext("Transect 5", side = 3, adj = 0, cex = 1, col = "black") 
 
sp1 <- specaccum(transect6, "random") 
plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0, 
ci.col="lightblue", ylim=c(0,25)) 
mtext("Transect 6", side = 3, adj = 0, cex = 1, col = "black") 
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Using the collector method (by transect) 
 
 
# COLLECTOR 
par(mfrow=c(3,2)) 
 
sp1 <- specaccum(transect1, "collector") 
plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0, 
ci.col="lightblue", ylim=c(0,25)) 
mtext("Transect 1", side = 3, adj = 0, cex = 1, col = "black") 
 
sp1 <- specaccum(transect2, "collector") 
plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0, 
ci.col="lightblue", ylim=c(0,25)) 
mtext("Transect 2", side = 3, adj = 0, cex = 1, col = "black") 
 
sp1 <- specaccum(transect3, "collector") 
plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0, 
ci.col="lightblue", ylim=c(0,25)) 
mtext("Transect 3", side = 3, adj = 0, cex = 1, col = "black") 
 
sp1 <- specaccum(transect4, "collector") 
plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0, 
ci.col="lightblue", ylim=c(0,25)) 
mtext("Transect 4", side = 3, adj = 0, cex = 1, col = "black") 
 
sp1 <- specaccum(transect5, "collector") 
plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0, 
ci.col="lightblue", ylim=c(0,25)) 
mtext("Transect 5", side = 3, adj = 0, cex = 1, col = "black") 
 
sp1 <- specaccum(transect6, "collector") 
plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0, 
ci.col="lightblue", ylim=c(0,25)) 
mtext("Transect 6", side = 3, adj = 0, cex = 1, col = "black") 
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Using the random method: 
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Using the collector method: 

	
 
 
What we are primarily interested in here is whether there are any large jumps or kinks in 
the data. There are a couple places where there seem to be jumps, but there is nothing 
consistent, and given the coarse granularity of the transect (just nine quadrats) some 
jumpiness is to be expected. 
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Let's now look at all transects combined. We'll add some additional estimates to the 
graphs, focusing on the data as it was collected, moving from the boardwalk into the 
rainforest. 
 
par(mfrow=c(2,1)) 
 
sp1 <- specaccum(borneo.out, "random") 
 
plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0, 
ci.col="lightblue") 
 
boxplot(sp1, col="yellow", add=TRUE, pch="+") 
 
mtext("Random", side = 3, adj = 0, cex = 1, col = "black") 
 
sp1 <- specaccum(borneo.out, "collector") 
 
plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0, 
ci.col="lightblue", ylim=c(0,45)) 
 
mod1 <- fitspecaccum(sp1, "lomolino") # collector 
 
plot(mod1, add = TRUE, col=2, lwd=2) 
 
mtext("Collector with Lomolino Model Fitted", side = 3, adj = 0, cex 
= 1, col = "black") 
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The original question was one of examining whether there is a difference in curves when 
the data is reversed (i.e. would moving towards the boardwalk produce a different curve 
to that generated by moving away from the boardwalk). 
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We'll produce use the random method to generate graphs showing the error around the 
curve as well as all the curves generated by bootstrapping. We'll append the collector 
curve to the end along with an estimated species curve based on a Lomolino model. 
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Examining the plots, what we can immediately see is the direction of collection makes 
no difference to the random models, and the Lomolino model fitted to the collector 
method is the same also. This shouldn't be surprising as the methods we are using are 
intended to overcome some of the problems of local heterogeneity in a generally uniform 
environment (no biological systems are perfectly uniform, so small scale or local 
heterogeneity has to be something that can be managed by these methods). 
 
But, the actual collector curves are quite different. It looks very much like there might be 
something going on in terms of differences in species richness near and far away from 
the boardwalks. 
 
The species accumulation curves won't allow us to easily examine this. Instead we'll 
need to take some different approaches. 
 

Using the rarefy method 
We can use rarefaction to identify how many species we would expect to obtain for a 
given number of plants counted. I'm going to use a basis of 20 plants counted (half of 
the 40 species), although you can play with values of 5, 10, 30 or more. Once you reach 
40+ plants counted you should start to see the numbers of predicted species flattening 
out. 
 
rar <- rarefy(borneo.out, 20) 
rar 
 

 
 
 
You can interpret this to mean, that for all of the first quadrats combined (closest to 
boardwalk) the number of species you should expect to obtain for 20 plants counted is 
15.7. For quadrat 2 you should expect 15.0 species per 20 plants etc. 
 
You can plot this too: 
 
par(mfrow=c(1,1)) 
plot(rar) 
	

RESULT 
 

[1] 15.66952 15.03077 15.92464 12.95323 10.97026 15.21481 
12.09091 12.00000 14.47619 
attr(,"Subsample") 
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Shannon's Diversity Index 
There are some other indicators of interest too. We can use package vegan to obtain 
Shannon's Diversity index (a measure of entropy or degree of 'surprise' at finding a new 
species). Species richness is easily done in Excel just by summing rows, and I've already 
done this in the borneo.richness.csv. 
	
div <- diversity(borneo.out) 
div 
plot(div) 
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Species Richness 
Species richness is easily done in Excel just by summing rows, and I've already done this 
in the borneo.richness.csv. 
 
borneo.summary <- read.table('borneo_richness.csv',header=T, sep = ',') 
borneo.summary 
 

 
 
Let's now generate indices for each quadrat on the transects and add these back into the 
richness dataset. 
 
library(vegan) 
 
rar <- rarefy(borneo.out, 20) 
borneo.summary$RAR.OUT <- rar 
 
rar <- rarefy(borneo.in, 20) 
borneo.summary$RAR.IN <- rar 
 
div <- diversity(borneo.out) 
borneo.summary$DIV.OUT <- div 
 
div <- diversity(borneo.in) 
borneo.summary$DIV.IN <- div 
 
borneo.summary 
	
	 	

RESULT 
 
> borneo.summary 
  QUADRAT AWAY.BOARDWALK TOWARDS.BOARDWALK 
1       1             28                21 
2       2             26                19 
3       3             25                22 
4       4             25                27 
5       5             24                24 
6       6             27                25 
7       7             22                25 
8       8             19                26 
9       9             21                28 
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RESULT 
 
> borneo.summary 
  QUADRAT AWAY.BOARDWALK TOWARDS.BOARDWALK 
1       1             28                21 
2       2             26                19 
3       3             25                22 
4       4             25                27 
5       5             24                24 
6       6             27                25 
7       7             22                25 
8       8             19                26 
9       9             21                28 
 
  RAR.OUT   RAR.IN  DIV.OUT   DIV.IN 
1 15.66952 14.47619 2.898746 2.582424 
2 15.03077 12.00000 2.791295 2.302014 
3 15.92464 12.09091 2.844305 2.323397 
4 12.95323 15.21481 2.546117 2.826944 
5 10.97026 10.97026 2.339936 2.339936 
6 15.21481 12.95323 2.826944 2.546117 
7 12.09091 15.92464 2.323397 2.844305 
8 12.00000 15.03077 2.302014 2.791295 
9 14.47619 15.66952 2.582424 2.898746 
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And we can generate some figures to examine the trends. We should see an mirror 
opposite of figures here, because all we have done is flip the data. 
 
par(mfrow=c(3,2)) 
 
plot(AWAY.BOARDWALK~QUADRAT,data=borneo.summary) 
abline(lm(AWAY.BOARDWALK~QUADRAT,data=borneo.summary), lwd=2, 
col="red") 
mtext("Richness: From boardwalk to forest (Out)", side = 3, 
adj = 0, cex = 1, col = "black") 
 
plot(TOWARDS.BOARDWALK~QUADRAT,data=borneo.summary) 
abline(lm(TOWARDS.BOARDWALK~QUADRAT,data=borneo.summary), 
lwd=2, col="red") 
mtext("Richness: From forest to boardwalk (In)", side = 3, adj 
= 0, cex = 1, col = "black") 
 
plot(RAR.OUT~QUADRAT,data=borneo.summary) 
abline(lm(RAR.OUT~QUADRAT,data=borneo.summary), lwd=2, 
col="red") 
mtext("Estimated species per 20 counted: Out", side = 3, adj = 
0, cex = 1, col = "black") 
 
plot(RAR.IN~QUADRAT,data=borneo.summary) 
abline(lm(RAR.IN~QUADRAT,data=borneo.summary), lwd=2, 
col="red") 
mtext("Estimated species per 20 counted: In", side = 3, adj = 
0, cex = 1, col = "black") 
 
plot(DIV.OUT~QUADRAT,data=borneo.summary) 
abline(lm(DIV.OUT~QUADRAT,data=borneo.summary), lwd=2, 
col="red") 
mtext("Shannon Diversity: Out", side = 3, adj = 0, cex = 1, 
col = "black") 
 
plot(DIV.IN~QUADRAT,data=borneo.summary) 
abline(lm(DIV.IN~QUADRAT,data=borneo.summary), lwd=2, 
col="red") 
mtext("Shannon Diversity: In", side = 3, adj = 0, cex = 1, col 
= "black") 
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In a sense, the mirror reflection is a bit redundant. All we are really interested in is 
whether there is a trend across the transects. We can use straightforward regression 
analysis to obtain P-values also. 
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# FINAL GRAPHS 
par(mfrow=c(3,1)) 
 
plot(AWAY.BOARDWALK~QUADRAT,data=borneo.summary) 
abline(lm(AWAY.BOARDWALK~QUADRAT,data=borneo.summary), lwd=2, 
col="red") 
mtext("Richness: From boardwalk to forest (Out)", side = 3, 
adj = 0, cex = 1, col = "black") 
 
plot(RAR.OUT~QUADRAT,data=borneo.summary) 
abline(lm(RAR.OUT~QUADRAT,data=borneo.summary), lwd=2, 
col="red") 
mtext("Estimated species per 20 counted: Out", side = 3, adj = 
0, cex = 1, col = "black") 
 
plot(DIV.OUT~QUADRAT,data=borneo.summary) 
abline(lm(DIV.OUT~QUADRAT,data=borneo.summary), lwd=2, 
col="red") 
mtext("Shannon Diversity: Out", side = 3, adj = 0, cex = 1, 
col = "black") 
 
The following code can be used to run some straightforward regression analyses. 
 
summary(lm(AWAY.BOARDWALK~QUADRAT,data=borneo.summary)) 
summary(lm(RAR.OUT~QUADRAT,data=borneo.summary)) 
summary(lm(DIV.OUT~QUADRAT,data=borneo.summary)) 
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Conditional inference trees 
Conditional inference trees (CIFs) are a useful way to identify complex relationships in 
data, especially where there may be several interactions at work. CIFs have some 
advantages over other methods: 

• Any type of data can be used for the response variable (no assumptions) 
o Although transformed response data will sometimes be easier to read 

• Any type of data can be used for the explanatory variables (no assumptions) 
• Any number of explanatory variables can be used (impossible to over-parameterise) 

 
Conditional inference trees examine all possible splits in a response variable by all 
possible combinations of predictor variables and then nominates a split in the data that 
best maximises within group homogeneity and between group variance. The split is 
tested against a significance level, and if the split is non-significant, the CIF returns a 
non-significant result (a single boxplot). If the split satisfies the significance level 
(usually either P < 0.1 or P < 0.05) then the data is re-examined for further splitting and 
the process is repeated. This process is called binary recursive partitioning. 
 
Here is the basic formula for a CIF: 
 
library(party) 
  
agilis.tree <- ctree(HABITAT~ PRED1 + PRED2 + PRED3, 
data=agilis,control = ctree_control(mincriterion = 0.9)) 
plot(agilis.tree) 
 
You can look at the model by writing: 
agilis.tree	
 
You can adjust the significance level by changing mincriterion = 0.9. What happens 
if you change the mincriterion = 0.9 to 0.8, 0.5 or 0.1? 
 
There is no limit to the number of predictors you can include (although not all of them 
will make it into the model as a significant effect). Using the table on the next page as a 
guide, have a go at running CIFs looking at various response variables (small mammal 
abundance) using various predictor variables. 
 
If you find that one predictor variable (like HABITAT) is dominating the trees you are 
constructing, try removing it and re-running the trees to see what happens. 
 
Also, what happens when you nominate HABITAT as the response variable? 
 
 



	
	

310	

VARIABLES YOU MAY WISH TO EXAMINE 
sqrtAGILIS  Abundance of all agile antechinus 
sqrtF  Abundance of all female antechinus 
sqrtM  Abundance of all male antechinus 
sqrtFUSCIPES  Abundance of bush rats 
sqrtLUTREOLUS  Abundance of swamp rats 
sqrtSWAINSONII  Abundance of dusky antechinus 
sqrtMUSCULUS  Abundance of feral domestic mice 
sqrtRATTUS  Abundance of feral black rats 
 
VARIABLES YOU MAY WISH TO USE AS PREDICTORS 
YEAR  Year in which the data was collected 
HABITAT  Was the forest fragmented (F) or continuous (C)? 
MONTH  What month was the data collected in (1 = Jan, 12 = Dec) 
sqrtFOX  Index of fox activity at site 
total.ABH  Total area at breast height of trees 
ABH.m2  Mean area at breast height of trees 
median.ABH  Median area at breast height of trees 
TREE.SPECIES  Species richness of trees 
STUMPS  Number of stumps in 20x20 quadrates (400m2) 
DOMINANCE  Dominance index applied to shrub species 
EVENNESS.W  Wilson's evenness index applied to shrub species 
median.DBH  Median diameter at breast height of trees 
SHRUB.COUNT  Number of shrubs counted in 20x20 quadrates (400m2) 
SHRUB.SPECIES  Species richness of shrubs 
BROWSE  Index of browsing pressure at site (higher = more browsing) 
WOODY.DEBRIS  Number of logs counted in 20x20 quadrates (400m2) 
pcDEAD  Percentage of trees that were dead and standing 
pcNONEUC  Percentage of trees that were not Eucalyptus 
CANOPY  Index of canopy. 0 = none. 5 = heavy. 
MIDSTOREY  Index of midstorey. 0 = none. 5 = heavy. 
UNDERSTOREY  Index of understorey. 0 = none. 5 = heavy. 
GROUNDCOVER  Index of groundcover. 0 = none. 5 = heavy. 
LEAF.LITTER  Index of leaf litter. 0 = none. 5 = heavy. 
BRACKEN  Was bracken 0 absent, 1, present, 2, dominant? 
SLOPE  Was there a slope at the site? 1=Y 0 =N 
RIDGE  Was there a ridge at the site? 1=Y 0 =N 
GULLY  Was there a gully at the site? 1=Y 0 =N 
ALT.m  Altitude of site above sea level 
LAT.DEC  Decimal latitude of site 
LONG.DEC  Decimal longitude of site 
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Example of a conditional inference tree (with interpretation) 
	
agilis.tree <- ctree(sqrtAGILIS~ BRACKEN + LEAF.LITTER, 
data=agilis,control = ctree_control(mincriterion = 0.9)) 
 
agilis.tree 
 

 
 
plot(agilis.tree) 
	
	

	
Figure	X.	Conditional	inference	tree	of	agile	antechinus	total	abundance	as	a	function	of	Bracken	and	
Leaf	Litter.	In	sites	with	little	bracken	(index	<	0.5)	agile	antechinus	abundances	were	higher	(Node	

2,	n	=	24).	In	sites	where	bracken	was	more	dominant	(index	>	0.5)	leaf	litter	influences	agile	
antechinus	abundances.	Sites	with	higher	bracken	indices	and	less	leaf	litter	had	the	lowest	agile	
antechinus	abundances	(Node	4,	n	=	72).	In	sites	with	high	bracken	indices	but	also	high	leaf	litter	

indices,	agile	antechinus	abundance	was	higher	(Node	5,	n	=	24).

RESULT 
  Conditional inference tree with 3 terminal nodes 
 
Response:  sqrtAGILIS  
Inputs:  BRACKEN, LEAF.LITTER  
Number of observations:  120  
 
1) BRACKEN <= 0.5; criterion = 1, statistic = 18.693 
  2)*  weights = 24  
1) BRACKEN > 0.5 
  3) LEAF.LITTER <= 3.5; criterion = 0.998, statistic = 10.736 
    4)*  weights = 72  
  3) LEAF.LITTER > 3.5 
    5)*  weights = 24 
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Random Forests 
Random Forests is a model averaging technique based on Conditional Inference trees 
(above). A Random Forests analysis bootstaps a random set of variables from your set of 
predictors and tries to build a Conditional Inference Tree using this subset. It then saves 
the tree, bootstaps another set of variables, and tries to build a second tree, a third and 
so on. As a default, we usually aim for about 10,000 trees (which can take a while to run 
depending on the data and your computer). The actual test output is straightforward and 
elegant. Once all of the trees have been generated, the test counts up the number of 
times any given variable was used to construct a tree. If a variable has been used more 
frequently it is probably more important for predicting the response variable. This allows 
the test to work out a set of relative importances for the predictors involved. 
 
Some random forests basics: 

• Random forests analysis requires one response and any number of predictors 
• You can't over-fit or over-parametize the model-selection process 
• Correlation of predictors is not a concern 
• Will accept any type(s) of data including categorical, binomial, continuous etc 

 
Load libraries 
library(party) 
 
Load data 
agilis <- read.table('agilis-abundance.csv', header=T,sep=',') 
 
agilis <-na.omit(agilis) 
 
str(agilis)	
 
Decide on your response and predictors. 
 
Response:  sqrtAGILIS	
Predictors ABH.m2	
 SHRUB.COUNT 
 WOODY.DEBRIS 
 LEAF.LITTER 
 pcNONEUC 
 ALT.m 
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Set some controls for the Random Forests process: 
 
data.controls <- cforest_control(ntree=10000, mtry=3, replace = 
FALSE) 
 
The above controls are instructing R how many trees to build (10000), how many 
variables to select for each tree (3) and whether to replace variables back into the 'bag' 
after they have been picked (i.e. can a variable be picked twice so that the random 
assortment is smaller than it would otherwise be?) (FALSE = No replacement). 
 
Standard advice is to set the mtry to the square root of the number of predictors. We 
have six predictors, which gives a square root of 2.49, which we will round up to 3. The 
default is 5. 
 
Set a seed. Any random number will do: 
set.seed(42)	
 
Now, build a model using the following code: 
fit.cforest <- cforest(sqrtAGILIS ~ ABH.m2 + SHRUB.COUNT + 
WOODY.DEBRIS + LEAF.LITTER + pcNONEUC + ALT.m, controls = 
data.controls, data=agilis)  
 
The order of predictor variables doesn't matter. 
 
Now generate the relative importances for the variables. Using conditional = TRUE 
is less biased than the default (leaving out this command) but is also computationally 
intensive. Have a go at running the following code, but if it takes more than about 5min 
cancel the operation by clicking on the red stop sign in R Studio, and re-run the code 
without the conditional = TRUE operator. 
 
With conditional = TRUE 
fit.varimp <- varimp(fit.cforest, conditional = TRUE) 
	
Without conditional = TRUE	
fit.varimp <- varimp(fit.cforest) 
 
If you were preparing data for a scientific paper or a presentation it would be appropriate 
to run the data using the conditional = TRUE operator. This may require you to run 
the test overnight or get access to a powerful computer. 
 
On the assumption that you probably don't want to wait 15 to 30 min to test this code, 
I've continued using the test without the conditional = TRUE operator. 
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You can look at the relative importances as a set of numbers, but these numbers have no 
units and on their own they are not very meaningful. It is more sensible to present them 
graphically: 
 
fit.varimp 
	

	
	
	
dotchart(sort(fit.varimp) 

	
	
  

RESULT 
 
  ABH.m2          SHRUB.COUNT     WOODY.DEBRIS 
  -1.952247e-06   -2.959465e-05   2.072595e-05  
  LEAF.LITTER     pcNONEUC        ALT.m 
  4.546654e-03    7.789202e-04    1.452086e-02 
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dotchart(sort(fit.varimp), pch = 16, 
xlab="Variable Importance\n(values to right of dashed vertical 
line are meaningful as predictors)") 
abline(v=abs(min(fit.varimp)), col='red', lty='longdash', 
lwd=2) 

	
 

 
The same data can be presented as a barplot (overpage). 
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barplot(sort(fit.varimp), horiz=TRUE, 
xlab="Variable Importance\n(values to right of dashed vertical 
line are meaningful as predictors)") 
abline(v=abs(min(fit.varimp)), col='red', lty='longdash', 
lwd=2) 
abline(v=0, col="black") # to add a line at zero 
	

	
 
 
The above results suggest that Altitude of sites, Leaf Litter and percentage of non-
Eucalyptus trees at sites are all important for explaining the abundance of agile 
antechinus. This is telling us the importance of these variables but we don't know 
anything about the direction of effect. Often when using Random Forests it is useful to 
include a graph showing the non-parametric correlation coefficients or some boxplots as 
well. 
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Structural Equation Modelling (Pathway Analysis) 
Structural Equation Modelling is a way to test complex webs of positive and negative 
relationships for parsimony and significance. It allows for you to compare one theoretical 
'structure' or 'web' of relationships with a second or third theoretical web of relationships 
and identify which pattern of relationships is best supported by the data. If you are 
interested in Structural Equation Modelling you should consider obtaining and reading 
Bill Shipley's Cause and Correlation in Biology. It is an easy to read, persuasive and 
interesting book focusing on how causal relationships might be identified in a tangle of 
correlational data. 
 
Useful things about SEM 
Allows for comparing complex relationships: biology is a complicated world full of 
interactions and variables feeding back on each other. SEM allows you to examine a 
whole set of interacting variables in one go, instead of piecemeal. 
Arguably allows for inferences about cause and effect: this is more contentious, but at 
least some writers argue that SEM can allow correlational data to be investigated in a 
way that allows cause and effect to be unravelled. More typically, the view is that cause 
and effect cannot be shown without a controlled experiment, but the view that SEM 
provides some insight into cause and effect is becoming more widely accepted. 
 
Considerations when using SEM 
• Latent to observed ratio: A model needs to have at least 3 observed variables per 1 latent 

variable. Solutions include: 
o Add observed variable(s) or remove latent variable(s) (preferable) 
o Constrain two latent variables so that they have the same loading (less preferable) 

• Endogenous latent variables: An endogenous latent variable will probably need three or 
more predictors (exogenous observed) variables contributing to explaining it. Otherwise, 
there may not be enough information to allow the model to predict the latent variabe. 

• Degrees of Freedom: It is easy to saturate a SEM by including too many estimated parameters 
(latent variables and correlational lines) and too few observed variables (the actual observed 
data series). You will be warned by R if your degrees of freedom are negative and the model 
will refuse to build. In this situation, consider removing unobserved variables and/or lines 
of causal influence from the model. 

• Negative variance: Problems that can occur is that if you force two highly correlated 
variables to be non-correlated. This can generate negative variance which can cause the 
model to collapse. 

• Covariance of predictors: As with all linear models, covarying predictors can cause issues 
when building pathway models. 

• Normality of response variables: Problems with normality of endogenous variables can cause 
issues with the model building. 

 
Terminology: One minor issue (but a confusing one) is that latent variables (unmeasured variables) 
are called 'factors' in the pathway analysis and SEM literature. In the following we use 'latent variable' 
only and avoid using 'factor' to avoid confusion, but if you are reading reviews or help articles on SEM 
keep in mind that the word 'factor' may not mean a categorical variable with levels, but rather may 
mean 'an unmeasured variable'. 
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The main package used for SEM in R is sem and it contains most of the functions we will 
use here. 
 
Load libraries 
install.packages("sem") 
library(sem) 
 
Load data 
agilis <- read.table('agilis-morphometrics.csv', 
header=T,sep=',') 
 
We are going to have a go at taking the example conceptual flow diagram proposed by 
Johnstone et al. (2011) (shown earlier in this document) and turning it into a SEM for 
analysis. The original diagram is shown on the following page. 
 
We need to take the diagram and turn it into a form that can be used as a template to 
construct a SEM in R. There are a number of variables, such as covariance values, that 
are not considered in the diagram as it was published, but which need to be taken into 
account. 
 
If you are doing this step with your own data you can either write the diagram down on 
a piece of paper or create it inside a simple graphics program like Powerpoint or Keynote. 
 
Also, a note to the wise. Structural Equation Models are sometimes viewed as a magic 
wand by biologists who hope these models can demonstrate causal relationships among 
complex variables including some that were not measured. As we are going to see, 
building Structure Equation Models is not straightforward. Often it is better to start small 
and apply a SEM process to just a part of an overall theory that makes good biological 
sense. In the end, only experience building SEMs will allow you to construct these models 
without (as many) problems. 
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The original form of the conceptual flow diagram we'll work with: 
	

	
	
Figure X. Conceptual flow diagram of the main results. There are well established associations 
between anthropogenic habitat fragmentation and the creation of novel edge habitat, habitat 
change and habitat area reduction [3]. Associations supported by significant findings are 
indicated by *. Findings that are significant, but may be confounded by an interaction, are 
indicated by ^. Grey arrows indicate a theoretical mechanism by which an association could be 
operating. 

Johnstone CP, Lill A, Reina RD - PLoS ONE (2011) 
 
Pictorial representations used for SEM have a standard set of symbols and are called Path 
Diagrams. For this reason, SEM is also sometimes called pathway analysis. Before looking 
at how to create a path diagram, it is useful to define some terms (based on David A. 
Kenny, 2011): 
 

• Observed Variable: a variable that has been measured 
• Latent Variable: a variable that has not been measured 
• Exogenous Variable: a variable that is not caused by another variable. Exogenous 

variables can cause one, two or more endogenous variables. 
• Endogenous Variable: a variable that is caused by another variable. Endogenous 

variables can also cause other endogenous variables. e.g. in a very simple example 
where habitat degradation causes increased predator activity causes decrease in small 
mammal abundance, habitat degradation is exogenous, predator activity is 
endogenous and small mammal abundance is also endogenous. 

• Structural Coefficient: a measure of change in the effected variable given one unit 
of change in the causal variable and no change in any other variable. This can be 
thought of as similar to a regression coefficient, although it is not always 
estimable using multiple regression. 

• Disturbance: Equivalent to error in linear equations. This is the amount of change 
in an effected variable that is not attributable to any variables in the equation. 
Usually each endogenous variable will have a Disturbance. 

• Structural Model: The total set of structural equations merged into a model of 
cause and effect.  



	
	

320	

Creating a path diagram: step 1 
The first step is to work out what variables are Observed and what variables are Latent 
in the conceptual flow diagram. Although in the original 2011 published study the 
perimeter and area of forest fragments were measured, we will treat this as if they were 
not measured so that we can illustrate how to include Latent variables. 

• Anthropogenic habitat fragmentation Observed 
• Proportion of Edge Habitat Latent 
• Habitat Degradation Latent 
• Area of Fragment Observed 
• Core area of fragment Latent 
• Female antechinus abundance Observed 
• Female antechinus stress metric Observed (N:L ratio) 
• Simpson's diversity index for shrub species Observed 
• Shrub Count Observed 
• Percentage of non-Eucalyptus trees Observed 
• Woody debris (logs) Observed 
• Total agile antechinus abundance Observed 
• Fat reserves Observed (mass) 
• Regenerative anaemia Observed (RBC) 
• per capita Food resources Latent 

 
Where N:L ratio is the ratio of neutrophils to lymphocytes in circulating peripheral blood 
and MSR is mass-size residuals in grams. 
 
We're going to change the model slightly. Instead of predicting lower female abundance 
in edge than interior habitat in fragments, we will predict that there is lower female 
abundance in fragments due to an area effect. All continuous forest will be set to having 
an 'area' of 1000 ha, although this is really just functioning as an arbitrary dummy value 
because the areas of continuous forest were 10,000 ha or more. Additionally, although 
the researchers originally used Shannon's diversity index for shrubs, we will use 
Simpson's diversity index instead. These two indices should roughly agree, so we 
shouldn't expect this to be a serious deviation from the original theory outlined in the 
conceptual flow diagram. 

• Anthropogenic habitat fragmentation FRAGMENTATION 
• Proportion of Edge Habitat Latent 
• Habitat Degradation Latent 
• Area of Fragment AREA.ha 
• Core area of fragment Latent 
• Sex of antechinus SEX 
• Total, F & M Antechinus abundance at site AGILIS, AGILIS.F, AGILIS.M 
• Female antechinus stress metric NL 
• Simpson's diveristy index for shrub species SIMSPONS.DIVERSITY 
• Shrub Count SHRUBS.COUNT 
• Percentage of non-Eucalyptus trees pcNONEUC 
• Woody debris (logs) WOODY.DEBRIS 
• Fat reserves MASS 
• Regenerative anaemia RBC 
• per capita Food resources Latent  
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Creating a path diagram: step 2 
We can now create the basic path diagram. Here are some basic rules to help keep the 
path diagram interpretable: 

• Causal arrows start at the cause and end at the effect 
• Double arrows are used to show feedback or mutual cause 
• Observed variables are placed in boxes 
• Latent variables are placed in ovals or circles 

 
The following diagram uses the title names for variables in the file agilis-
morphometrics.csv. In the original study Mass-size residuals were used to estimate fat 
reserves of antechinus and haemoglobin hematocrit residuals were used to estimate a 
condition call regenerative anaemia. We'll use much rougher but also simpler estimates. 
For an estimate of fat reserves we'll just use the mass (g) of the animals. For an estimate 
of regenerative anaemia we'll just use red blood cell count per litre. 
 
Note also that we think there might be a causal effect of Edge Habitat on Degradation, 
both of which are unobserved, or latent variables. 
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Creating a path diagram: step 3 
However, the model is not complete yet. To be able to write out the model in equation 
form we need to create (arbitrary) names for the causal arrows (red) and a Disturbance 
variables (blue). 
 
Rules for labelling causal arrows and disturbances 

• Each endogenous variable receives disturbance 
• Exogeneous variables do not receive disturbance 
• Names for arrows are arbitrary (but a notation of lam1, lam2, lam3 is typical) 
• At least one arrow leading away from a latent variable should be set to 1 to help 

us identify the scale of the corresponding latent variable 
 
First, we'll add the names for the pathways. Note that for each latent variable one of the 
causal arrows leading away from the latent variable is not given a name. Instead it is set 
to a value of 1.  
	

	
	
The next step is not strictly necessary for R, but it is useful to do simply to help us 
remember that all endogenous variables have a disturbance. Disturbance can be thought 
of as similar to error in a standard variance model: that is, the amount of unexplained 
variation left over once the variance due to the predictors of interest has been 
established. 
 
On the next page the same diagram is shown, but with disturbances shown in blue. The 
disturbances are numbered so that we can remember that the disturbance affecting one 
variable is not affecting another variable.  
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Rules for labelling causal arrows and disturbances 

• A double-headed arrow (reciprocal causality) cannot be applied to an endogenous 
variable 

• Instead, the arrow is drawn between the disturbances of the two variables 
 
We don't have an example of two endogenous variable mutually causing each other, but 
if we thought that pcNONEUC and SHRUBS.COUNT (for example) were casually 
influencing each other (that is the percentage of non-eucaluptus trees influnced shrubs 
numbers, and shrub numbers influenced the number of non-eucalyptus trees) then we 
would draw a double-headed arrow between the disturbances of pcNONEUC and 
SHRUBS.COUNT. 
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The Reticular Action Model (RAM) 
The above step can (arguably) be skipped if you are comfortable with structural equations 
in R because R uses the Reticular Action Model (RAM) notation, which simplifies the 
process. You don't need to distinguish between disturbance error and measurement error. 
These are the notations used: 
 
A -> B Causal effect of A on B 
A <-> B Covariance A and B 
A <-> A If A is endogenous: the disturbance (error) associated with A 
A <-> A If A is exogenous: the measurement error associated with A 
 

These four notations make up all the possible relationships in the pathway structure. 
 

Creating a structural model 
We now have enough information to start building a model. Specifying a model uses the 
specify.model() code in package sem. You need to type out each relationship, 
including the covarying relationships. WARNING: This is the step that usually creates the 
most problems. Forgetting a double arrow or getting a name wrong will cause substantial 
issues. We also need to define some arbitrary names for the latent variables at this stage. 
It's best to keep the names short but clear. I've decided to use the following: 

• Proportion of Edge Habitat Latent EDGE 
• Habitat Degradation Latent  DEG 
• Core area of fragment Latent CORE 
• per capita Food resources Latent FOOD 

 
And we need to assign pathway labels to the error effects. Remember that there is no 
need to distinguish between measurement error (of indictor / exogenous variables) and 
disturbance error (of response / endogenous variables), so all variables receive a similar 
error pathway. 
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Before creating a model, we want to remove rows where there is missing data. 
Remember, this is a drastic way to handle missing values but sometimes it is the only 
feasible way to clean up a dataset. Load data (if you haven't already) 
 
agilis <- read.table('agilis-morphometrics.csv', 
header=T,sep=',')	
 
Remove missing values 
agilis <- na.omit(agilis)	
 
The model specification code is as follows: 
model.fit <- specifyModel() 
1:  FRAGMENTATION  -> EDGE, lam1, NA 
2:  FRAGMENTATION  -> DEG, lam3, NA 
3:  FRAGMENTATION  -> CORE, lam2, NA 
4:  EDGE  -> AGILIS.F, NA, 1 
5:  EDGE  -> NL, lam4, NA 
6:  EDGE  -> DEG lam5, NA 
7:  DEG  -> SIMPSONS.DIVERSITY, NA, 1 
8:  DEG  -> SHRUBS.COUNT, lam7, NA 
9:  DEG  -> pcNONEUC, lam8, NA 
10: DEG  -> WOODY.DEBRIS, lam9, NA 
11: SIMPSONS.DIVERSITY -> RBC, lam10, NA 
12: SHRUBS.COUNT -> RBC, lam11, NA 
13: pcNONEUC -> RBC, lam12, NA 
14: WOODY.DEBRIS -> RBC, lam13, NA 
14: CORE -> AGILIS, NA, 1 
15: AGILIS -> FOOD, lam16, NA 
16: CORE -> FOOD, lam17, NA 
17: FOOD -> MASS, NA, 1 
18: SEX -> NL, lam6, NA 
19: SEX -> RBC, lam14, NA 
20: SEX -> MASS, lam15, NA 
21: FRAGMENTATION <-> FRAGMENTATION, e1, NA 
22: EDGE <-> EDGE, e2, NA 
23: NL <-> NL, e3, NA 
24: AGILIS.F <-> AGILIS.F, e4, NA 
25: DEG <-> DEG, e5, NA 
26: CORE <-> CORE, e6, NA 
27: AGILIS <-> AGILIS, e7, NA 
28: SIMPSONS.DIVERSITY <-> SIMPSONS.DIVERSITY, e8, NA 
29: SHRUBS.COUNT <-> SHRUBS.COUNT, e9, NA 
30: pcNONEUC <-> pcNONEUC, e10, NA 
31: WOODY.DEBRIS <-> WOODY.DEBRIS, e11, NA 
32: FOOD <-> FOOD, e13, NA 
33: MASS <-> MASS, e14, NA 
34: RBC <-> RBC, e15, NA 
35: SEX <-> SEX, e16, NA 
 
IMPORTANT: The next step is creating a covariance matrix. The covariance matrix should 
include all measured variables. If a variable is named in the model specification (above) 
but is not in the covariance matrix R will assume it is a latent (unmeasured) variable. This 
will be true for misspelling or case errors. If you call a variable WOODYDEBRIS in the 
model and WOODY.DEBRIS in the covariance matrix R will not be able to identify these 
as the same variable. Take care!  
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Creating a covariance matrix: step 1 
We need to create a covariance matrix cor all observed variables. The latent variances 
and the disturbance variables do not need to be included, and as we do not have data 
for them anyway they could not be included in this matrix. 
 
This is a lazy workaround to set up a dataset that entirely consists of your variables of 
interest and nothing else. Make sure at this point that all your variables are in a numeric 
form. If you want to generate covariance matrices using factors, packages for this purpose 
do exist but they are outside the scope of this document. The hetcor function in the 
polycor package is one place to start if you are interested in generating correlation 
matrices using factors. However, for now we will work with the basic R cov function. 
 
Create a dataset using one of the variables… 
 
cov.data <- data.frame(agilis$FRAGMENTATION) 
cov.data$FRAGMENTATION <- cov.data$agilis.FRAGMENTATION 
head(cov.data) # look at the output to check it is correct 
 
Now we can add all of the other variables of interest. 
 
# Now add the other observed variables 
cov.data$SIMPSONS.DIVERSITY <- agilis$SIMPSONS.DIVERSITY 
cov.data$SHRUBS.COUNT <- agilis$SHRUBS.COUNT 
cov.data$pcNONEUC <- agilis$pcNONEUC 
cov.data$WOODY.DEBRIS <- agilis$WOODY.DEBRIS 
cov.data$AGILIS <- agilis$AGILIS 
cov.data$SEX <- agilis$SEX 
cov.data$NL <- agilis$NL 
cov.data$RBC <- agilis$RBC 
cov.data$MASS <- agilis$MASS 
 

Creating a covariance matrix: step 2 
Now create a covariance matrix using the cov function. Check everything has worked. 
Factors or missing values will create problems. 
 
cov.fit <- cov(cov.data) 
cov.fit 
 

COUNTING ROW NUMBERS 
Generating a SEM requires entering the number of observations. The easiest way to do 
this is either embed nrow(your.data) in the appropriate place in the dataset or use 
the following code to count the rows and assign them to a variable called n. 
 
n <- nrow(cov.data) 
n 
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Fitting the model 
You can now fit the final model. Use the following code: 
 
model.sem <- sem(model.fit, cov.fit, n) 
 
You will receive the following error message. What went wrong? 
 
> model.sem <- sem(model.fit, cov.fit, n) 
Error in 1:m : NA/NaN argument 
In addition: Warning messages: 
1: In sem.semmod(model.fit, cov.fit, n) : 
  The following observed variables are in the input covariance or raw-moment matrix 
but do not appear in the model: 
agilis.FRAGMENTATION 
 
2: In sem.default(ram, S = S, N = N, raw = raw, data = data, pattern.number = 
pattern.number,  : 
  S is numerically singular: expect problems 
3: In sem.default(ram, S = S, N = N, raw = raw, data = data, pattern.number = 
pattern.number,  : 
  S is not positive-definite: expect problems 

 
The first warning about agilis.FRAGMENTATION can be ignored. That is just a 
consequence of the way we built a correlation structure. 
 
The second two error messages are more serious and actually the model has not been 
built as all as a consequence. S is the covariance matrix, so we appear to have problems 
with the fundamental model. 
 
The largest problem with SEM is inexperience with modelling leading to construction of 
an inappropriate model. Looking at the model more carefully, we might have done a 
good job of mimicking our original conceptual flow diagram, but we have done a poor 
job of creating a model that can be analysed. There are three obvious problems: 

• Too many latent variables 
• Too few measured predictors feeding into latent variables 
• Maybe a problem with normality of endogenous variables? 

 
We want a ratio of no less than 3:1 measured to latent (unmeasured variables). We have 
four latent variables and 12 measured variables. This is exactly a 3:1 ratio which is 
borderline in terms of model creation. 
 
An even bigger problem is that we have only one or two arrows from measured variables 
feeding into each latent variable. A minimum of three arrows per latent variable is 
needed in most models. This also raises some questions around why we even need the 
latent variables. If FRAGMENTATION is the only variable predicting the unmeasured 
EDGE variable, then why include EDGE at all? Surely FRAGMENTATION would be just as 
good a predictor for downstream effects (and in this case better because we measured 
FRAGMENTATION). 
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Regarding the final point, if you try to fit a model and it collapses one thing to remember 
is that this is a form of linear modelling. The response (endogenous) variables may need 
to be transformed for normality. 
Here's a new path diagram with the (in this case rather meaningless) latent variables 
removed: 
	

	
	
	
To be on the safe side we might as well apply a transformation to all of the response 
variables we are using as well. We'll use the (rather drastic) Rank Normal transformation 
from package GenABEL. 
 
library(GenABEL) 
 
agilis$rnAGILIS.F <- rntransform(agilis$AGILIS.F) 
agilis$rnAGILIS <- rntransform(agilis$AGILIS) 
agilis$rnRBC <- rntransform(agilis$RBC) 
agilis$rnMASS <- rntransform(agilis$MASS) 
agilis$rnNL <- rntransform(agilis$NL) 
head(agilis)	
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This will vastly simplify the model but to make it even easier let's start by focusing down 
on just a part of the model. We'll start with the variables that predict MASS (without SEX). 
 
model.fit <- specifyModel() 
FRAGMENTATION    ->   rnAGILIS,   lam7,   NA 
FRAGMENTATION -> rnMASS, lam8, NA 
FRAGMENTATION   -> rnNL, lam2, NA 
rnAGILIS -> rnMASS, lam16, NA 
FRAGMENTATION <-> FRAGMENTATION, e1, NA 
rnAGILIS <-> rnAGILIS, e4, NA 
rnMASS <-> rnMASS, e5, NA 
rnNL  <->  rnNL,  e3,  NA 
 
 
Load library semPlot so we can draw an attractive plot: 
 
install.packages("semPlot") 
library(semPlot) 
 
Fit the model, check the paths and the summary. Instead of counting the n and working 
out a covariance matrix we will pass the data directly to the sem function. 
 
model.sem<-sem(model.fit, data=agilis) 
semPaths(model.sem) 
summary(model.sem) 
	

	
	
	

RESULT 
 
> summary(model.sem) 
 
 Model Chisquare =  0   Df =  0 Pr(>Chisq) = NA 
 AIC =  12 
 BIC =  0 
 
 Normalized Residuals 
      Min.    1st Qu.     Median       Mean    3rd Qu.       Max.  
-1.313e-15 -1.114e-15 -3.744e-16 -4.118e-16  0.000e+00  3.916e-16  
 
 R-square for Endogenous Variables 
rnAGILIS   rnMASS  
  0.3443   0.0457  
 
 Parameter Estimates 
      Estimate   Std Error  z value     Pr(>|z|)                                      
lam7  -1.2053537 0.11762323 -10.2475816 1.213416e-24 rnAGILIS <--- FRAGMENTATION      
lam8  -0.1617666 0.17000527  -0.9515385 3.413311e-01 rnMASS <--- FRAGMENTATION        
lam16 -0.2435273 0.08275803  -2.9426422 3.254243e-03 rnMASS <--- rnAGILIS             
e1     0.2509453 0.02509453  10.0000000 1.523971e-23 FRAGMENTATION <--> FRAGMENTATION 
e4     0.6943769 0.06943769  10.0000000 1.523971e-23 rnAGILIS <--> rnAGILIS           
e5     0.9511424 0.09511424  10.0000000 1.523971e-23 rnMASS <--> rnMASS               
 
 Iterations =  0 
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This is a fairly simple model but it does capture one part of our overall theory. Now, we'll 
try adding NL to the model using the transformed rnNL variable. 
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model.fit <- specifyModel() 
FRAGMENTATION    ->   rnAGILIS, lam7,   NA 
FRAGMENTATION   -> rnMASS, lam8, NA 
FRAGMENTATION   -> rnNL, lam2, NA 
rnAGILIS -> rnMASS, lam16, NA 
FRAGMENTATION <-> FRAGMENTATION, e1, NA 
rnAGILIS <-> rnAGILIS, e4, NA 
rnMASS <-> rnMASS, e5, NA 
rnNL  <->  rnNL, e3,  NA 
 
model.sem<-sem(model.fit, data=agilis) 
semPaths(model.sem) 
	

	
 
So far so good but if we try adding any more variables the model collapses. Let's have a 
look at constructing another part of the model. 
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model.fit <- specifyModel() 
FRAGMENTATION ->  SIMPSONS.DIVERSITY, lam3,  NA 
FRAGMENTATION  -> SHRUBS.COUNT, lam4, NA 
FRAGMENTATION      -> pcNONEUC,    lam5, NA 
FRAGMENTATION  -> WOODY.DEBRIS, lam6, NA 
FRAGMENTATION <-> FRAGMENTATION, e1, NA 
SIMPSONS.DIVERSITY <-> SIMPSONS.DIVERSITY, e8, NA 
SHRUBS.COUNT  <-> SHRUBS.COUNT,  e9, NA 
pcNONEUC   <-> pcNONEUC,  e10, NA 
WOODY.DEBRIS  <-> WOODY.DEBRIS,  e11, NA 
 
model.sem<-sem(model.fit, data=agilis) 
semPaths(model.sem) 
	

	
 
Let's have a go at adding the next set of associations through to RBC. 
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model.fit <- specifyModel() 
FRAGMENTATION -> SIMPSONS.DIVERSITY, lam3,  NA 
FRAGMENTATION -> SHRUBS.COUNT, lam4,  NA 
FRAGMENTATION -> pcNONEUC, lam5,   NA 
FRAGMENTATION -> WOODY.DEBRIS, lam6,  NA 
SIMPSONS.DIVERSITY -> rnRBC, lam10, NA 
SHRUBS.COUNT -> rnRBC, lam11, NA 
pcNONEUC -> rnRBC, lam12, NA 
WOODY.DEBRIS -> rnRBC, lam13,   NA 
FRAGMENTATION <-> FRAGMENTATION, e1,  NA 
SIMPSONS.DIVERSITY <-> SIMPSONS.DIVERSITY, e8,  NA 
SHRUBS.COUNT <-> SHRUBS.COUNT, e9,  NA 
pcNONEUC <-> pcNONEUC, e10, NA 
WOODY.DEBRIS <-> WOODY.DEBRIS,  e11,  NA 
rnRBC <-> rnRBC, e6,  NA 
 
model.sem<-sem(model.fit, data=agilis) 
semPaths(model.sem) 
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You can use the following commands to look at the hypothesis tests, standardized 
coefficients (loadings) and residuals of the model. 
 

Hypothesis tests 
 
summary(model.sem) 
 

 
 

  

RESULT 
 
Model Chisquare =  45.53198   Df =  7 Pr(>Chisq) = 1.078023e-07 
 AIC =  73.53198 
 BIC =  8.40885 
 
 Normalized Residuals 
    Min.  1st Qu.   Median     Mean  3rd Qu.     Max.  
-2.52100 -0.06109  0.00000  0.13090  0.53980  3.18300  
 
 R-square for Endogenous Variables 
SIMPSONS.DIVERSITY       SHRUBS.COUNT           pcNONEUC       WOODY.DEBRIS              rnRBC  
            0.0028             0.0173             0.3306             0.0612             0.1723  
 
 Parameter Estimates 
      Estimate      Std Error    z value     Pr(>|z|)                                                
lam3  -1.707283e-02 2.296528e-02 -0.74341927 4.572279e-01 SIMPSONS.DIVERSITY <--- FRAGMENTATION      
lam4  -2.097423e+01 1.119060e+01 -1.87427198 6.089295e-02 SHRUBS.COUNT <--- FRAGMENTATION            
lam5  -3.102159e-01 3.121163e-02 -9.93911169 2.813246e-23 pcNONEUC <--- FRAGMENTATION                
lam6   4.485230e+00 1.242693e+00  3.60928380 3.070436e-04 WOODY.DEBRIS <--- FRAGMENTATION            
lam10 -5.657973e-03 3.996601e-01 -0.01415696 9.887048e-01 rnRBC <--- SIMPSONS.DIVERSITY              
lam11 -1.380908e-03 8.163211e-04 -1.69162380 9.071773e-02 rnRBC <--- SHRUBS.COUNT                    
lam12 -1.098146e+00 2.439994e-01 -4.50061045 6.775858e-06 rnRBC <--- pcNONEUC                        
lam13 -3.480869e-02 7.238257e-03 -4.80898803 1.516963e-06 rnRBC <--- WOODY.DEBRIS                    
e1     2.509453e-01 2.509453e-02 10.00000000 1.523971e-23 FRAGMENTATION <--> FRAGMENTATION           
e8     2.646991e-02 2.646991e-03 10.00000000 1.523971e-23 SIMPSONS.DIVERSITY <--> 
      SIMPSONS.DIVERSITY 
e9     6.285151e+03 6.285151e+02 10.00000000 1.523971e-23 SHRUBS.COUNT <--> SHRUBS.COUNT             
e10    4.889246e-02 4.889246e-03 10.00000000 1.523971e-23 pcNONEUC <--> pcNONEUC                     
e11    7.750619e+01 7.750619e+00 10.00000000 1.523971e-23 WOODY.DEBRIS <--> WOODY.DEBRIS             
e6     8.470803e-01 8.470803e-02 10.00000000 1.523971e-23 rnRBC <--> rnRBC                           
 
 Iterations =  0 
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Standard coefficients 
 
stdCoef(model.sem) 
 

 
 

Residuals 
 
residuals(model.sem) 
 

 

RESULT 
 
            Std. Estimate                                            
lam3   lam3 -0.0524951989      SIMPSONS.DIVERSITY <--- FRAGMENTATION 
lam4   lam4 -0.1313822351            SHRUBS.COUNT <--- FRAGMENTATION 
lam5   lam5 -0.5749995324                pcNONEUC <--- FRAGMENTATION 
lam6   lam6  0.2472884193            WOODY.DEBRIS <--- FRAGMENTATION 
lam10 lam10 -0.0009112061              rnRBC <--- SIMPSONS.DIVERSITY 
lam11 lam11 -0.1091651121                    rnRBC <--- SHRUBS.COUNT 
lam12 lam12 -0.2933772703                        rnRBC <--- pcNONEUC 
lam13 lam13 -0.3126355591                    rnRBC <--- WOODY.DEBRIS 
e1       e1  1.0000000000           FRAGMENTATION <--> FRAGMENTATION 
e8       e8  0.9972442541 SIMPSONS.DIVERSITY <--> SIMPSONS.DIVERSITY 
e9       e9  0.9827387083             SHRUBS.COUNT <--> SHRUBS.COUNT 
e10     e10  0.6693755377                     pcNONEUC <--> pcNONEUC 
e11     e11  0.9388484377             WOODY.DEBRIS <--> WOODY.DEBRIS 
e6       e6  0.8277231049                           rnRBC <--> rnRBC 
 

RESULT 
 
                   FRAGMENTATION SHRUBS.COUNT  WOODY.DEBRIS      pcNONEUC SIMPSONS.DIVERSITY        rnRBC 
FRAGMENTATION       0.000000e+00    0.0000000  4.440892e-16  0.000000e+00      -8.673617e-19  0.099834579 
SHRUBS.COUNT        0.000000e+00    0.0000000  1.636113e+02 -3.863186e+00       9.510381e-01 -1.458133590 
WOODY.DEBRIS        4.440892e-16  163.6113144  1.421085e-14 -3.793072e-01       5.650461e-02  0.190282885 
pcNONEUC            0.000000e+00   -3.8631856 -3.793072e-01  1.387779e-17      -4.595932e-03  0.018563895 
SIMPSONS.DIVERSITY -8.673617e-19    0.9510381  5.650461e-02 -4.595932e-03      -3.469447e-18  0.001766858 
rnRBC               9.983458e-02   -1.4581336  1.902829e-01  1.856389e-02       1.766858e-03 -0.025005818 
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From the above models we can see that Fragmentation did have a significant effect on 
the percentage of non-Eucalyptus trees, the shrubs count and the woody debris but had 
no effect on diversity of shrubs (measured by Simpson's diversity). Of these 
environmental variables, only percentage of non-Eucalyptus trees and woody debris had 
an effect on RBC. 
 
It is also possible to look at the total, direct and indirect effects in a sem: 

 
Direct and indirect effects 
 
effects(model.sem) 
 

 
 
 
For all of the above outputs a lot of cleaning up will be needed before the results are fit 
for a results table. However there is a lot of interesting information here and there is a 
possibility that genuine complex relations and indirect causal chains might be 
illuminated using this method. 
 

RESULT 
 
Total Effects (column on row) 
                   FRAGMENTATION  SHRUBS.COUNT  WOODY.DEBRIS  pcNONEUC SIMPSONS.DIVERSITY 
SIMPSONS.DIVERSITY   -0.01707283 -1.004635e-20  0.000000e+00  0.000000        0.000000000 
SHRUBS.COUNT        -20.97422680 -1.110223e-16  0.000000e+00  0.000000        0.000000000 
pcNONEUC             -0.31021587 -2.172013e-18 -1.895620e-17  0.000000        0.000000000 
WOODY.DEBRIS          4.48522998  3.112253e-17  0.000000e+00  0.000000        0.000000000 
rnRBC                 0.21359749 -1.380908e-03 -3.480869e-02 -1.098146       -0.005657973 
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You can also compare two models to check which is more parsimonious. The standard 
anova code for model comparison works for sems. Here is an example: 
 
model1.fit <- specifyModel() 
FRAGMENTATION -> SIMPSONS.DIVERSITY, lam3, NA 
FRAGMENTATION -> SHRUBS.COUNT, lam4, NA 
FRAGMENTATION -> pcNONEUC, lam5, NA 
FRAGMENTATION -> WOODY.DEBRIS, lam6, NA 
SIMPSONS.DIVERSITY -> rnRBC, lam10, NA 
SHRUBS.COUNT -> rnRBC, lam11, NA 
pcNONEUC -> rnRBC, lam12, NA 
WOODY.DEBRIS -> rnRBC, lam13, NA 
FRAGMENTATION <-> FRAGMENTATION, e1, NA 
SIMPSONS.DIVERSITY <-> SIMPSONS.DIVERSITY, e8, NA 
SHRUBS.COUNT <-> SHRUBS.COUNT, e9, NA 
pcNONEUC <-> pcNONEUC, e10, NA 
WOODY.DEBRIS <-> WOODY.DEBRIS, e11, NA 
rnRBC <-> rnRBC, e6, NA 
 
model2.fit <- specifyModel() 
FRAGMENTATION -> SHRUBS.COUNT, lam4, NA 
FRAGMENTATION -> pcNONEUC,   lam5,   NA 
FRAGMENTATION   -> WOODY.DEBRIS, lam6, NA 
SHRUBS.COUNT   ->  rnRBC, lam11, NA 
pcNONEUC   ->  rnRBC,   lam12, NA 
WOODY.DEBRIS   ->  rnRBC,   lam13,   NA 
FRAGMENTATION <-> FRAGMENTATION, e1, NA 
SHRUBS.COUNT  <-> SHRUBS.COUNT,  e9,  NA 
pcNONEUC   <-> pcNONEUC, e10, NA 
WOODY.DEBRIS  <-> WOODY.DEBRIS,  e11,  NA 
rnRBC  <-> rnRBC,  e6,  NA 
SIMPSONS.DIVERSITY   <-> SIMPSONS.DIVERSITY, e8, NA 
 
model1.sem<-sem(model1.fit, data=agilis) 
model2.sem<-sem(model2.fit, data=agilis) 
 
anova(model.1.sem, model.2.sem) 
 
anova(model1.sem,model2.sem) 
LR Test for Difference Between Models 
 
           Model Df Model Chisq Df LR Chisq Pr(>Chisq) 
model1.sem        7      45.532                        
model2.sem        9      46.084  2  0.55211     0.7588 
 
Important: to be able to compare models both models must have the same set of variables 
so that the covariance matrices can be compared. 
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Finally, it is worth noting that the semPaths plotting package can do some nice things 
in terms of layout. Here are some useful options: 
	
semPaths(model.sem, what = "std", layout = "tree") 

 
 
 
semPaths(model.sem, what = "std", layout = "circle") 
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semPaths(model.sem, what = "std", layout = "circle", fade=FALSE) 

 
 
semPaths(model.sem, what = "std", layout = "circle", 
fade=FALSE,nodeLabels=letters[1:6]) 
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semPaths(model.sem, what = "std", layout = "tree2", 
fade=FALSE,nodeLabels=letters[1:6]) 

 
 
semPaths(model.sem, what = "std", layout = "circle2", 
fade=FALSE,nodeLabels=letters[1:6]) 
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What are the take-home messages for pathway analyses? 
 

• If you are going to use structural equation models you'll need to 
develop a good understanding of what you are doing. 

• Start with smaller models first and build onto them. 
• Don't try to throw everything into a model all at once. 
• Remember to be careful with how many latent (unmeasured) variables 

you include (if any). 
• Ensure that your models are biologically meaningful. 
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Likelihoods, log likelihoods & AICs 
First off, let's start getting into some definitions: 
 

Q. What is the difference between a probability and a likelihood? 

 
Most people who are learning statistics are surprised to learn that statistics is not 
monolithic. There are competing theories and competing ways to applying statistical 
analysis to a set of data to obtain some sort of idea about what the data means. 
 
Science is primarily about looking for patterns or regularities in nature and the universe 
and constructing theories about these patterns. We want our theories to be predicative 
and we test them to check if they are. For some reason, this seems to work. We don't 
know why the universe should be regular or have repeatable laws, but it seems to. 
 
Deep time evolution can be taken as evidence supporting the idea that the universe, and 
importantly for us, biological systems, function in repeatable ways that have predictable 
patterns. If there were no predictable patterns, evolution would not function as a process. 
In particular, convergent evolution implies that there are biological pressures that select 
for a trait, and because the selection pressure is consistent, the trait confers an advantage 
in the future. 
 
Not all selection pressures are consistent though. Some selection pressures seem to have 
come and gone. Large, piercing teeth was seemingly an advantage for mammal predators 
from the Miocene to the Pleistocene, but no modern predators sport these huge teeth 
and we don't know why they were selected for convergently in both sparassodonts (close 
relatives of marsupials) and eutherians (felids in particular). 
 
To discuss different theories about how patterns is nature are best understood, we need 
to return to some terminology we learnt at the beginning of the semester. 
 

Parameters 
The actual descriptive values for the whole population 

(mean, variance etc). 
 

Statistics 
The descriptive values we have obtained by sampling the population 

(mean, variance etc). 
 

Outcomes 
The actual discrete data values obtained by sampling. 
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Thylacosmilus atrox (A South American close relative of marsupials) 
 

 
 

Smilodon fatalis (A North American eutherian felid) 
 
We'll use the word 'odds' in its conventional sense to explain this. So far through most 
of this semester we have been discussing probabilities. The probability gives the odds of 
an event given the parameters. This is written in an equation form like this: 
 

P(x | θ) 
 
P  = Probability 
x  = The outcomes or 'statistics', which is the data obtained 
|  = given 
θ  = The parameters of the population 
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Because we can obtain probabilities, and by sampling from a population repeatedly, 
eventually arrive at a probability that is fairly 'stable' we consider a probability to be 
something that is knowable. 
 
We cannot sample the entire population in most instances, and so for this reason the 
parameters are never definitely knowable, but, assuming the sampling from a population 
is random and unbiased we can estimate the parameters. 
 
When attempting to estimate parameters we start to talk about likelihoods instead of 
probabilities. A likelihood gives the odds of the parameters given the outcomes 
(statistics). In a sense, we're trying to work backwards, and are thinking about: what is 
the likelihood of parameters being X is the outcomes (statistics) are x? Likelihood is 
written like this in an equation form: 
 

L(θ | x) 
 
L  = Likelihood 
x  = The outcomes or 'statistics', which is the data obtained 
|  = given 
θ  = The parameters of the population 
 
If sampling is random and unbiased then we can estimate the likelihood (unknown) 
from the probability (known). This is called the likelihood function. 
 

L(θ | x) = P(x | θ) 
 
There are some statisticians who argue that this estimation is invalid because it is making 
assumptions about the relationship between the statistics and parameters that can never 
actually be known. Increasingly, however, most scientists now accept that as long as we 
acknowledge that the likelihood is only an estimate, this approach is acceptable. 
 

Maximum likelihood estimation (ML) 
Maximum likelihood estimation is a method that can be used to estimate the parameters 
of a population given the outcomes (statistics) assuming a given hypothesis is true. The 
mathematics of how ML estimation works are beyond the scope of this course. In a 
practical sense the 'hypothesis' will be the set of predictors you have included in a model 
and their relationships with each other (+ or *). 
 
In essence, maximum likelihood estimation picks values for the parameters that 
maximise the likelihood function. An intuitive way to think about this is that ML 
estimation picks values for the parameters that maximise the agreement between the 
observed data (the outcomes or statistics) and the hypothesized model. 
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A maximum likelihood function will range from 0 to 1, where 1 is a perfect model fit. 
 

If you want to compare models to decide which hypothesized model best fits the 
observed data outcomes, you need to use ML 

 

Restricted maximum likelihood estimation (REML) 
Restricted maximum likelihood estimation is similar to maximum likelihood estimation, 
except that it uses a likelihood function generated from transformed values so that 
'nuisance' parameters have no effect on the estimated parameters values. 
 
An typical example of a nuisance parameter is the variance, which we are not usually 
interested in. More often we are interested in the means of groups, because we are 
interested in whether groups may have different or the same means. 
 
Note though that variance in not always a nuisance parameter. For example, in 
evolutionary biology and examination of fitness we are often interested in the variance 
rather than the means of seed production among species or populations. If you want to 
test variances you often need to use very specific statistical approaches, because most 
approaches assume that variance is of little or no interest. 
 
The mathematics underlying REML is beyond the scope of this course. The important 
thing to know about REML is that: 
 

You cannot use REML to compare models 
 

REML is better than ML if you want to look at the P values for predictors in a model 
 

	  



	
	

347	

Can we select the best model and then look at its P values? 
Really, really, no. The problem is that this would be like having your cake and eating it 
too. Through a process of comparing models we have already picked the model that 
represents a hypothesis that best fits the observed data. Interpreting P values is not really 
sensible because 1) it would be a surprise if the P values were not significant, and 2) we 
interpret P values when we are trying to falsify a bold prediction about data that has not 
been collected yet. By constructing the best possible model from a set of data and then 
testing P values we would be strongly biasing significance. 
 
Remember that falsification is intended to get around the problem of induction. If we 
collect data, then use induction (which model selection falls broadly within) to build the 
best model, and then take P values from the best model, what we have done is build a 
hypothesis (model) from the data we have, and then test the hypothesis (model) using 
the data that was used to construct the model. 
 
That would be highly circular. So how is model selection used and reported then? We 
use Information Criteria to pick the best model and the best model (and those that are 
nearly as good) are presented as the best explanations for the data. 
 
Before looking at Information Criterion, however, let's look at Log Likelihood. 
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Q. What is a log likelihood? Why are log likelihoods used? 

 
To explain what a log likelihood is, we need to start by explaining what the likelihood 
ratio is. We start with the following Law of Likelihood: 
 

Within the framework of a statistical model, a particular set of data supports 
one statistical hypothesis better than another if the likelihood of the first 
hypothesis given the data exceeds the likelihood of the second hypothesis 
given the data. 

 
 
This can be written as so: 
 

	
 
The likelihood of the hypothesis given the outcomes in the data is assumed to be same 
as the probability of the outcomes given the hypothesis (assuming random and unbiased 
sampling). If we were interested in testing a null hypothesis this could be rewritten: 
 

	
 
 
A log likelihood test is used for model comparison, that is, deciding which model is better 
of two (or more) competing models. The test statistic is sometimes called the Support 
but is more often termed the Deviance (often denoted as D), and it is calculated: 
 

	
	
It	is	called	a	Deviance	value	because	high	values	indicate	that	the	observed	data	are	strongly	
deviating	from	the	hypothesis	that	is	being	tested.	Low	values	indicate	that	the	observed	data	
is	not	strongly	deviating	from	the	data	being	tested.	Why	do	we	transform	it	by	-2?	And	is	this	
related	to	the	 'tests	of	deviance'	we	have	 looked	at	already?	You	know,	those	generalised	
linear	model	things?	 	

Likelihood ratio = 
P(x | H1) 

P(x | H2) 

Likelihood ratio = 
Likelihood given the model of interest 

Likelihood given the alternative model 

D = -2 * ln 
Likelihood given the model of interest 

Likelihood given the alternative model ( ) 
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Why do we transform by natural logs and multiply by -2?	
Likelihoods are ratios. They range from 0 to 1, where 1 would be a perfect model fit 
where the model perfectly predicts all values of the response. However, working with 
ratios is mathematically tricky, and to make ratios easier to work with we log transform 
them. 
 
A natural log-transformed (ln) likelihood will range from infinitely negative numbers for 
a very poor fit to 0 for a model that perfectly fits all values of the observed response. 
This is called the log likelihood (LL). 
 
One further step is applied. Negative numbers are inconvenient to work with, and to 
make the log of the likelihood into a positive linear relationship we multiple the log by 
-2. After this step a model that perfectly fits the data and predicts all values of the 
response perfectly will have a -2*LL of 0, and poor models will have increasingly high 
values of -2*LL. 
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Is this related to a deviance test? 
Yes. This is the 'clever maths' that a deviance test uses to take a set of binary or count 
data and turn it into a form that can be examined using linear regression, from which P 
values can be obtained. 
 
In a generalised linear model, we take advantage of the mathematical property that the 
log of a ratio is equal to the log of the first number minus the log of the second number. 
 

	
	

	
	

	
 
The higher the deviance the lower the goodness of fit of the full model (the model with 
all predictors included). The Deviance is then used in a way similar to how the F ratio is 
used in an ANOVA.

D = -2 * ln 
Likelihood given the model of interest 

Likelihood given the alternative model ( ) 

D = -2 * ln 
P(x | θ null) 

P(x | θ full) 
( ) 

A	parameter	for	every	observation 

Only	the	parameters	of	interest 

 
The	Deviance	is	the	distance	

from	model	of	interest	to	
everything	fitted 

D = -2 * ln (  P(x | θ interest)  ) - ln (  P(x | θ full) )  ( ) 
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An ANOVA compares residuals in a way that is similar to how a regression model works 
except that residuals are taken from the mean of each group rather than across a range 
of values. An F-ratio is derived from the variance of the residuals. 
 

F = signal / noise 
F = variance between treatments / variance within treatments 
F = mean squares of treatment / means squares of the error 
F = [sum of squares of treatment / [(T-1)] / [sum of squares of error / (n-1)] 

 
Remember hat the F-ratio is conceptually very similar to the t-value. It is a measure of 
the signal to noise in the data. If we view the Deviance as similar to the mean squares of 
the error, we can generate a signal to noise ratio and that can be used to generate P 
values for predictors in a model. 
 

Q. What is an information criterion? How are information criteria used in model 
selection? What does 'most parsimonious' mean? 
 
 
Information Criterion are used to judge the goodness of fit of a given model. They are 
in particular used for comparison among models with differing predictor values. 
 
The Deviance (-2*LL) is a form of Information Criterion where the lower the value the 
lower the Deviance of the data from the hypothesis and therefore the better the fit. But 
usually, we modify this value to try and judge whether a model is not only a good fit 
but a parsimonious fit. 
 

What is meant by parsimony? 
 Remember that simple models are always better. Remember also that eventually, just 
by adding more and more and more predictors to a model, we will be able to explain 
all values of the outcomes because there will be a predictor for every observed data 
point. Imagine you have three observations: 
 

 x Predictor 1 Predictor 2 Predictor 3 
 31 HIGH 1 20 
 5 HIGH 10 19 
 17 LOW 3 14 
 
If we used all three predictors, then we could state that x is equal to 17 when Predictor 
1 has the factorial value LOW, and x is equal to 5 when Predictor 2 has a high value, 
and x is equal to 31 when Predictor 3 has a high value. 
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But this model isn't actually useful. It is 'over-parameterised' or 'over-fitted'. We have 
added too many predictors, and because we have one predictor per data point we are 
explaining everything, and therefore nothing. 
 
A parsimonious model (and by extension a parsimonious hypothesis) is one where the 
fewest number of predictors explain the most variation in the observed outcomes. 
Information Criterion that attempt to pick the most parsimonious model are trading-off 
between perfect explanation of all observed outcomes on one hand and model simplicity 
on the other hand. They are attempting to pick an intermediate between explanatory 
power and too much complexity. 
 
There are several different commonly used Information Criterion. Akaike Information 
Criterion (AIC), Bayesian Information Criterion (BIC) and Deviance Information Criterion 
(DIC) are all commonly used and are superficially similar, in that they attempt to estimate 
how parsimonious a model is. AICs are the most commonly used of these Information 
Criterion, and this statistic works by taking the Deviance and penalising it for additional 
predictors.  
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AIC (Akaike information criterion) 
 

Q. What is an Akaike information criterion? How is it used? 

 
The AIC is usually written as follows: 

	
 
But if we want to look at the logic of how it works, this is easier to understand. 

	
-2ln(L) is Deviance. It is the same as -2*LL written differently. The value k is the number 
of predictors in the model. To understand why we add the predictors to the Deviance to 
penalise the Deviance remember that low values of Deviance imply a high goodness of 
fit and high values of Deviance imply a poor goodness of fit. 
 
The decision to add k multiplied by 2 instead of just add k isn't arbitrary. It is based on 
information entropy, but getting into an explanation of how exactly we arrive at 2k 
instead of understand k is beyond what we can reasonably tackle here. 
 
In principal what this means, is that the Deviance will be calculated for a model and then 
it will be penalised for additional predictors. The Deviance will be penalised by two for 
one predictor, four for two predictors, six for three predictors and so on. That means that 
all else being equal, if two models give the same Deviance, but one model includes more 
predictors it will be more heavily penalised. 
 
We take a lower AIC to be evidence of a more parsimonious model, and we usually take 
a difference of 2 as evidence that there is a difference between the models. We don't say 
'significant' difference because we don't want to confuse AICs with P values. A Bayes 
Information Criterion (BIC) is similar but takes sample size into account too. 
 

Bayes Information Criterion (BIC) 
 

	
	
	

	  

AIC = 2k – 2ln(L) 

AIC = – 2ln(L) + 2k 

BIC = – 2ln(L) + k * ln(n) 
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AIC & BIC :: R Code 
 
Load libraries 
 
install.packages("nlme") 
library(nlme) 
 
Load data 
agilis <- read.table('agilis-abundance.csv', 
header=T,sep=',') 
 
str(agilis)	
 
The package nlme provides another way to generate linear mixed effect models. The 
advice is that lme4 is more reliable for model comparison, but if we are interested in P 
value nlme is easier to use. For most purposes, nlme will be fine for model comparison 
too, and it is a bit easier to learn with, so we'll have a go at using it today. 
 
lme1 <- lme(sqrtAGILIS ~ HABITAT * SEX * ABH.m2 * LEAF.LITTER, 
random = ~1 | YEAR / MONTH, data=agilis, method="REML") 
 

Remember: use REML if interested in P values and ML if interested in model selection 
 
To use a broadly falsificationist approach, we'd check P values for the fixed effects 
(HABITAT, SEX, ABH.m2 and LEAF.LITTER) and calculate the percentage of variance 
explain for the random effects (YEAR and SITE) as well as provide an R2 value for the 
model as a whole (i.e. how much variation in agile antechinus abundances does the 
model explain in total).  
 
P values for the linear mixed effects model: 
anova(lme1) 
	
The	R2	value	of	the	whole	model:	
(cor(fitted(lme1),getResponse(lme1))^2) 
	
Percentage	of	variation	explained	by	the	random	effects:	
VarCorr(lme1) 
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Results for a falsificationist approach to a linear mixed effects model 
	

	 	

RESULT 
 
> anova(lme1) 
                               numDF denDF   F-value p-value 
(Intercept)                        1    94 125.24971  <.0001 
HABITAT                            1    94  30.71766  <.0001 
SEX                                1    94   7.00872  0.0095 
ABH.m2                             1    94   0.97497  0.3260 
LEAF.LITTER                        1    94   1.24246  0.2678 
HABITAT:SEX                        1    94   2.21283  0.1402 
HABITAT:ABH.m2                     1    94   0.44223  0.5077 
SEX:ABH.m2                         1    94   0.42621  0.5154 
HABITAT:LEAF.LITTER                1    94   0.03283  0.8566 
SEX:LEAF.LITTER                    1    94   2.43790  0.1218 
ABH.m2:LEAF.LITTER                 1    94   4.31845  0.0404 
HABITAT:SEX:ABH.m2                 1    94   1.03839  0.3108 
HABITAT:SEX:LEAF.LITTER            1    94   0.34609  0.5577 
HABITAT:ABH.m2:LEAF.LITTER         1    94   0.90513  0.3438 
SEX:ABH.m2:LEAF.LITTER             1    94   1.70031  0.1954 
HABITAT:SEX:ABH.m2:LEAF.LITTER     1    94   0.73939  0.3920 
 
> (cor(fitted(lme1),getResponse(lme1))^2) 
[1] 0.3735033 
 
> VarCorr(lme1) 
            Variance     StdDev     
YEAR =      pdLogChol(1)            
(Intercept) 0.001125295  0.03354541 
MONTH =     pdLogChol(1)            
(Intercept) 0.001131311  0.03363496 
Residual    0.045092472  0.21234988 
> 
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A model comparison approach to a linear mixed effects model instead 
 
If instead we were going to use a model selection approach, we would construct more 
than one model and compare them. Let's make a reduced and full model. The reduce 
model will just be additive and won't have any interactions in it. 
 
full.lme <- lme(sqrtAGILIS ~ HABITAT * SEX * ABH.m2 * 
LEAF.LITTER, random = ~1 | YEAR / MONTH, data=agilis, 
method="ML") 
 
reduced.lme <- lme(sqrtAGILIS ~ HABITAT + SEX + ABH.m2 + 
LEAF.LITTER, random = ~1 | YEAR / MONTH, data=agilis, 
method="ML") 
 
We can check the log likelihoods and AICs by using the commands: 
 
logLik(full.lme) 
logLik(reduced.lme) 
 
AIC(full.lme) 
AIC(reduced.lme) 
 
AICs can be negative. This happens if the Deviance (-2*LL) is greater than the number of 
predictors multiplied by 2. The interpretation is the same. The lower the AIC, the more 
parsimonious the model. Which model is more parsimonious according to the AICs? 
 
Which model is more parsimonious? 
	

	
	
The	model	with	 the	 lower	AIC	has	 the	better	parsimony.	 In	 this	case,	 the	 reduced	model.	
Incidentally,	AIC	values	can	be	negative.	You	still	take	the	lowest	(most	negative)	value	if	your	
AICs	are	negative.	
	
	  

RESULT 
 
> logLik(full.lme) 
'log Lik.' 22.48653 (df=19) 
 
> logLik(reduced.lme) 
'log Lik.' 14.63009 (df=8) 
 
> AIC(full.lme) 
[1] -6.973065 
 
> AIC(reduced.lme) 
[1] -13.26019 
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We can also compare models using the anova function: 
 
anova(full.lme, reduced.lme) 
	

	
	
 

Because the Likelihood Ratio Test is the same as the log of likelihood 1 minus the log 
of likelihood 2, the L.Ratio is 22.49 - 14.63 = 15.72. The P-value indicates whether 
there is a significant difference between the models. Although there is no significant 
difference, we would still accept that Model 2 (reduced) is more parsimonious than 
Model 1 (full) because the difference in AICs is > 2 (i.e. 13.26 - 6.97 is > 2). 
 
We can compare more than two models in this way. Let's create a another reduced 
model where YEAR is removed and we only control for SITE as a random factor. 
 
noyear.lme <- lme(sqrtAGILIS ~ HABITAT + SEX + ABH.m2 + 
LEAF.LITTER, random = ~1 | MONTH, data=agilis, method="ML") 
	
anova(full.lme, reduced.lme, noyear.lme) 
 
Which model is more parsimonious? 
	

	
 
It is looking as if the reduced model that is also missing Year as a random effect may be 
preferable. 
 
But what if we want to compare these models to the null model (with no predictors) and 
we want to check all possible combinations of predictors? There is a function called 
dredge in the library MuMIn that will do this: 
 
Load libraries 
 
  

RESULT 
 
            Model df   AIC        BIC      logLik   Test   L.Ratio   p-value 
full.lme     1    19  -6.973065   45.98928  22.48653                         
reduced.lme  2    8   -13.260189  9.03975   14.63009 1 vs 2 15.71288  0.1521 
 

RESULT 
 
> anova(full.lme, reduced.lme, noyear.lme) 
            Model df        AIC      BIC   logLik   Test   L.Ratio p-value 
full.lme        1 19  -6.973065 45.98928 22.48653                          
reduced.lme     2  8 -13.260189  9.03975 14.63009 1 vs 2 15.712876  0.1521 
noyear.lme      3  7 -15.179955  4.33249 14.58998 2 vs 3  0.080234  0.7770 
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install.packages("MuMIn") 
library(MuMIn) 
 
Apply the dredge function to the reduced model (this could take a while…): 
dredge(reduced.lme) 
	

	
	
The 'global model' is the model that has all variables included (based on what you used 
in your model construction). Model numbers are given on the left-hand side and the 
variables that are included or not included in each model are shown next. If you were to 
present this as a table in a paper you would (usually) only include the models that have 
AICs that are within a difference of 2 from the lowest AIC and the global model for 
comparison. The table below shows the output reformatted for inclusion in a report. 
 
Table X. Demonstration of how to present model selection results in a table. The table caption 
will need to explain that df = degrees of freedom; LL = log likelihood; AICc = corrected AIC; ΔAICc 
= delta corrected AIC; w = model weights. 

	
Note that we've renamed the models with numbers that make sense given that we've 
discarded a lot of the other models. These are models 11, 15 and 12 in the R output. The 
most parsimonious mode in the above example is the model that includes the predictors 

MODEL PREDICTORS df LL AICc ΔAICc w 
1   HABITAT   SEX 6 13.5 -14.3 0.0 0.36 
2  HABITAT LEAF LITTER SEX 7 14.3 -13.6 0.8 0.24 
3 ABH HABITAT  SEX 7 13.9 -12.8 1.6 0.16 

GLOBAL ABH HABITAT LEAF LITTER SEX 8 14.6 -12.0 2.4 0.11 

RESULT 
 
Global model call: lme.formula(fixed = sqrtAGILIS ~ HABITAT + SEX + ABH.m2 + 
LEAF.LITTER,  
    data = agilis, random = ~1 | YEAR/MONTH, method = "ML") 
--- 
Model selection table  
   (Int)     ABH.m2    HAB LEA.LIT SEX df logLik AICc  delta weight 
11  0.422000           +           +   6  13.535 -14.3  0.00 0.355  
15  0.268600           +   0.03757 +   7  14.283 -13.6  0.76 0.243  
12  0.393000 3.115e-05 +           +   7  13.880 -12.8  1.57 0.162  
16  0.236900 3.227e-05 +   0.03761 +   8  14.630 -12.0  2.36 0.109  
3   0.473300           +               5  10.223  -9.9  4.41 0.039  
7   0.318300           +   0.03797     6  10.953  -9.2  5.16 0.027  
13 -0.005099               0.09590 +   6  10.744  -8.7  5.58 0.022  
4   0.445000 3.057e-05 +               6  10.545  -8.3  5.98 0.018  
8   0.289900 3.063e-05 +   0.03777     7  11.253  -7.5  6.82 0.012  
14 -0.035160 3.085e-05     0.09603 +   7  11.046  -7.1  7.23 0.010  
5   0.046220               0.09590     5   7.599  -4.7  9.65 0.003  
6   0.019470 2.891e-05     0.09590     6   7.875  -3.0 11.32 0.001  
9   0.314600                       +   5   0.225  10.1 24.40 0.000  
10  0.286700 3.016e-05             +   6   0.490  11.8 26.09 0.000  
1   0.365900                           4  -2.432  13.2 27.54 0.000  
2   0.338100 2.999e-05                 5  -2.183  14.9 29.22 0.000  
Random terms (all models):  
‘1 | YEAR’, ‘1 | MONTH %in% YEAR’ 
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HABITAT and SEX only, but models 2 and 3 are not different enough to be considered 
unreasonable explanations for the observed data as well. The above example is ignoring 
potential interactions in the model. 
 
What happens if you	dredge	the full model we created earlier?	
	
dredge(full.lme) 
 
What happens when you dredge the full model? You should get output that looks 
something like this where all possible interaction terms have also been include as 
possible variables to include in the model. This is why you would typically only report 
the global model, the null model and the top 5-10 models (based on parsimony). 
Reporting all models would make for a very large (and not very meaningful) table. 
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Corrected AIC 
 

Q. What is a corrected Akaike information criterion? How is it used? 

 

	
 
The corrected AIC takes into account sample size and is preferable to use when sample 
sizes are small, especially less than 10. The dredge function defaults to using cAIC, which 
is why the output reads cAIC instead of AIC. The equation uses the number of 
observations (n) and number of predictors (k). 
 
A corrected AIC is usually a good choice, but it can under very particular situations 
generate a result that is uninterpretable. Work out the corrected AIC for the following 
situation. 
 

AIC = 205.1 
k = 9 

n = 10 
 
What is the corrected AIC for the above? 
	

	
 
 
What happened in the above example? Well,	n-k-1 is zero, and you can't divide a 
number by zero.  How would you avoid getting an undefined number for a corrected AIC? 
The best option is to be sure that your number of predictors is at least n-2 or lower. i.e. 
in the above example, K needed to be 8 predictors or less. 
  

AICc = AIC + 
2k (k + 1) 

n - k  - 1 

RESULT 
 
> k=9 
> n=10 
> 205.1 + (2*k*(k+1))/(n-k-1) 
[1] Inf 



	
	

361	

Code to generate 'rntransform' 
The function 'runtransform' is used a lot in this PDF, but the library GenABEL isn't being 
regularly maintained at the point when I'm writing this. If you want to generate the 
function, you can run the following code in R (which was simply taken from a working 
version of GenABEL, so this should still be cited back to GenABEL). 
 
# create ztransform first 
 
ztransform <- function (formula, data, family = gaussian)  
{ 
  if (missing(data)) { 
    if (is(formula, "formula"))  
      data <- environment(formula) 
    else data <- environment() 
  } 
  else { 
    if (is(data, "gwaa.data")) { 
      data <- data@phdata 
    } 
    else if (!is(data, "data.frame")) { 
      stop("data argument should be of gwaa.data or data.frame class") 
    } 
  } 
  if (is.character(family))  
    family <- get(family, mode = "function", envir = parent.frame()) 
  if (is.function(family))  
    family <- family() 
  if (is.null(family$family)) { 
    print(family) 
    stop("'family' not recognized") 
  } 
  if (is(try(formula, silent = TRUE), "try-error")) { 
    formula <- data[[as(match.call()[["formula"]], "character")]] 
  } 
  if (is(formula, "formula")) { 
    mf <- model.frame(formula, data, na.action = na.pass,  
                      drop.unused.levels = TRUE) 
    mids <- complete.cases(mf) 
    mf <- mf[mids, ] 
    y <- model.response(mf) 
    desmat <- model.matrix(formula, mf) 
    lmf <- glm.fit(desmat, y, family = family) 
    resid <- lmf$resid 
  } 
  else if (is(formula, "numeric") || is(formula, "integer") ||  
           is(formula, "double")) { 
    y <- formula 
    mids <- (!is.na(y)) 
    y <- y[mids] 
    resid <- y 
    if (length(unique(resid)) == 1)  
      stop("trait is monomorphic") 
    if (length(unique(resid)) == 2)  
      stop("trait is binary") 
  } 
  else { 
    stop("formula argument must be a formula or one of (numeric, integer, double)") 
  } 
  y <- (resid - mean(resid))/sd(resid) 
  tmeas <- as.logical(mids) 
  out <- rep(NA, length(mids)) 
  out[tmeas] <- y 
  out 
} 
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### create rntransform 
 
rntransform <- function (formula, data, family = gaussian)  
{ 
  if (is(try(formula, silent = TRUE), "try-error")) { 
    if (is(data, "gwaa.data"))  
      data1 <- phdata(data) 
    else if (is(data, "data.frame"))  
      data1 <- data 
    else stop("'data' must have 'gwaa.data' or 'data.frame' class") 
    formula <- data1[[as(match.call()[["formula"]], "character")]] 
  } 
  var <- ztransform(formula, data, family) 
  out <- rank(var) - 0.5 
  out[is.na(var)] <- NA 
  mP <- 0.5/max(out, na.rm = T) 
  out <- out/(max(out, na.rm = T) + 0.5) 
  out <- qnorm(out) 
  out 
} 
 
### test it worked on some numbers 
rntransform(c(2,3,4,5,10,4,5,3,2,19)) 
 
ztransform(c(2,3,4,5,10,4,5,3,2,19)) 

 


