
 1

Preliminaries
If you haven't already downloaded and installed a copy of R and RStudio please do so
now. Both programs are free to use. We will be using RStudio, but as this is simple a
user-friendly 'wrap-around' for R, you should download both programs.

Download R for windows
https://cran.r-project.org/bin/windows/base/

Download R for mac
https://cran.r-project.org/bin/macosx/

Download RStudio (just select the free version)
- Then scroll down to select your O/S from the list at the bottom of the page
https://rstudio.com/products/rstudio/download/#download

Changing working directory
Immediately on opening R, the first thing you need to do is change your working directory
to the folder where your data is currently kept. In the case of this PDF, you will need to
unzip the Borneo veg data files and then change your working directory so that it is
pointed at the file where the Borneo veg files have unzipped.

Changing working directory in RStudio
Changing the working directory in RStudio is the same for Windows and Mac.
Both: Select 'Session' > Set working directory > Choose Directory…
 > navigate to folder where your data is stored (i.e. your csv files)

Colour Coding
R code in this PDF is colour coded throughout. Functions (commands) are coloured
orange. Names of objects or options (i.e. things that you will need to change or rename)
are coloured blue. Basic syntactical signs (parenthesis, commas, plus or multiplication
signs) are colour black. Package names are coloured purple. Note, which follow a
hashtag (#) are not read by R, and serve as a place where you can make notes about your
tests, code, and figures. These are coloured green.

In the following example, the orange words are functions that R will recognise as
commands. Functions are typically placed to the immediate left of an opening
parenthesis. The library 'car' is denoted in purple, and is bracketed by black quote marks
and parentheses. The object swallows.lm is an object that the biologist as created and
named themselves.

install.pckages("car") # if not already installed
library(car)
crPlots(swallows.lm)

 2

Species Accumulation Curves
The concept behind a species accumulation curve (SAC) is actually quite straightforward.
Imagine you were hired to go into a forest and count all the species of frogs. Each day
you go out, looking for more frog species. To start with you would get one, two or three
new species each day, but over time you'd find fewer and fewer new species. Eventually
you'd be looking for a few days, or a week or a month and not find any new species. At
this point, we can probably assume you've found all or most of the frog species in the
forest. This doesn't necessarily mean you've found all the species. Some might be cryptic
and hard to see. Some might be inactive at the time of year you are looking. However,
broadly speaking we can build a curve from the number of new species you find each
day, and check where it levels out to get an estimate of how many species are probably
present.

Assumptions & Data Set-up
Species accumulation curves do not have any testable assumptions per se, but they can
provide meaningless or misleading results if the experimental design is faulty. The most
common reason for faulty design is sampling across a clear, heterogeneous boundary.
What might cause such a boundary? Imagine you are identifying frog species, and you
are collecting data over several weeks. If it was dry for most of the time, and then it rains
for three days, then returns to dry weather, you could easily find that there is a clear
difference between frogs that you identified during the dry and wet weather. The same
could happen if you cross a geographic boundary. If you are running transects through
forest, then cross into a wetland, the species assortment would probably suddenly jump.

Mostly, avoiding problems of heterogeneity is a matter of good design and thinking
carefully about field sites. When you come to plotting the data, a heterogeneous
boundary will be obvious as a 'jump' in the data. If the curve is smooth, and then jumps
or kinks upwards you may have a heterogeneity problem. How to cope with this is trickier.
To some degree, methods like the random bootstrapping approach smooth out these
kinks and assume the whole environment is homogeneous, and is some instances this
may actually be acceptable. Otherwise, it may be necessary to split the data (i.e. wet and
dry days, forest and wetland transects).

Gradual changes across a sampling range are less problematic than sudden jumps,
although keep in mind that by applying a species accumulation curve you are assuming
that the environment does represent a coherent whole--problems can still occur. It may
be possible to run a transects 3km up a mountainside and see only gradual changes in
species assortment, but it would still be questionable whether or not such a dataset is
truly representing a 'homogenous' environment. The clearest indicator that you are
running collection through several different and gradually changing environments is that
you will not see a levelling out of the curve. It will just continue to increase. Imagine if
you ran a sample all the way across a continent. It's quite possible the curve would never
properly level out, because you are always encountering new species.

 3

Measuring Effort
Species accumulation curves require some sort of index of effort. This could be quadrats
along one or more transect lines, or days spent looking for frogs, or number of new
species per individual counted (i.e. new frog species per frog), or area surveyed. In the
example we'll look at, the data was collected in Borneo, examining morphotypes of
understory plants. The data was collected in six transects through the rainforest with
nine quadrats per transect. The biologists were interesting in identifying whether there
might be a change in species richness near the tourist boardwalks in Mulu Forest Park.
To this end, they positioned Quadrat 1 (1x1m) immediately next to the boardwalk, and
then ran a transect at a right angle into the forest, so that Quadrat 9 was always the
furthest quadrat and always the same distance into the forest.

We need to import quite a few datasets. The first dataset records presence and absence
of a species in a given quadrat.

borneo <- read.table('borneo_binary.csv',header=T, sep = ',')
View(borneo)

As is, this is not easily usable for species accumulation curves, because the quadrat and
transect columns will require extra coding to get around. We could use code to remove
these columns, but instead I’ve just set up a separate csv file that is missing the first two
columns.

borneo <- read.table('borneo_presabs.csv',header=T, sep = ',')
View(borneo)

We've also summed the occurrences together and grouped these by quadrat:

borneo.out <- read.table('borneo_away_fr_boardwalk.csv',header=T,
sep = ',')
View(borneo)

And we have also split the data by transect:

transect1 <- read.table('borneo_transect1.csv',header=T, sep = ',')
transect2 <- read.table('borneo_transect2.csv',header=T, sep = ',')
transect3 <- read.table('borneo_transect3.csv',header=T, sep = ',')
transect4 <- read.table('borneo_transect4.csv',header=T, sep = ',')
transect5 <- read.table('borneo_transect5.csv',header=T, sep = ',')
transect6 <- read.table('borneo_transect6.csv',header=T, sep = ',')

Finally, we are interested in whether there may be a different pattern if we reverse the
data (i.e. flip the transects and run them from the forest towards the boardwalk). As such,
we have an inverted dataset as well:

borneo.in <- read.table('borneo_towards_boardwalk.csv',header=T,
sep = ',')

 4

Most of the code we will be using is from the vegan package, so you will need to load it
now if you don't have it already installed and loaded.

install.packages("vegan")
library(vegan)

Let's start by applying some different methods for generating species accumulation
curves. The method collector will add data in the order it was collected. The method
random is a form of bootstrapping and adds data in a random order. The method exact
finds the expected mean species richness and will only work if the data is in a
presence/absence format (the other methods will accept accumulated species counts).
The method coleman finds the expected species richness following Coleman et al.
(1982) and rarefaction finds the mean when accumulating individuals instead of
sites. If your data is already presented in the form of new species per individual plant or
animal counted, then you have already set it up as a rarefaction analysis by default (i.e.
no matter what you run it will come out as a form of rarefaction).

Let's work with the presence/absence data first.

sp1 <- specaccum(borneo, "random")
sp2 <- specaccum(borneo, "collector")
sp3 <- specaccum(borneo, "exact")
sp4 <- specaccum(borneo, "coleman")
sp5 <- specaccum(borneo, "rarefaction")

Graphing species accumulation curves
plot(sp1)
mtext("Random", side = 3, adj = 0, cex = 1, col = "black")

plot(sp2)
mtext("Collector", side = 3, adj = 0, cex = 1, col = "black")

plot(sp3)
mtext("Exact", side = 3, adj = 0, cex = 1, col = "black")

plot(sp4)
mtext("Coleman", side = 3, adj = 0, cex = 1, col = "black")

plot(sp5)
mtext("Rarefaction", side = 3, adj = 0, cex = 1, col = "black")

You should obtain the plots shown over-page. Note that ‘collector’ does not have
standard error bars, as it is simply presenting the species in the order they were found.
You can plot all the plots in one column by re-setting your par, but this will only work if
you have a sufficiently large screen.

par(mfrow=c(5,1))

 5

 6

Graphing species accumulation curves: adding colour

Let's try adding some colour and creating some nicer looking graphs. Just as an aside,
scientific graphing conventions don’t include titles (i.e. scientific graphs typically don’t
have titles). We are including titles just to keep track of what we are plotting because
there are so many plots to look at.

plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0,
ci.col="lightblue")
mtext("Random", side = 3, adj = 0, cex = 1, col = "black")

plot(sp2, ci.type="poly", col="blue", lwd=2, ci.lty=0,
ci.col="lightblue")
mtext("Collector", side = 3, adj = 0, cex = 1, col = "black")

plot(sp3, ci.type="poly", col="blue", lwd=2, ci.lty=0,
ci.col="lightblue")
mtext("Exact", side = 3, adj = 0, cex = 1, col = "black")

plot(sp4, ci.type="poly", col="blue", lwd=2, ci.lty=0,
ci.col="lightblue")
mtext("Coleman", side = 3, adj = 0, cex = 1, col = "black")

plot(sp5, ci.type="poly", col="blue", lwd=2, ci.lty=0,
ci.col="lightblue")
mtext("Rarefaction", side = 3, adj = 0, cex = 1, col =
"black")

Note also that methods that use bootstrapping will generate a slightly different result
each time because they are working from a randomly subsetting dataset. You can
‘stablise’ the result by setting a seed number. If you do this, you’ll get the same result
each time.

set.seed(42)

Now try re-running the random curve a couple times. You should find that you get the
same result. You can set the seed to any number. I tend to use 42 just because of fond
memories of reading Douglas Adams.

 7

 8

The species accumulation curves are looking quite nice, but we have a problem, which is
that R thinks the whole 6 transects by 9 quadrats is a single collecting event, giving over
50 samples. We can sum the species observations together, and organise them by
transects, but if we do this the method exact will no longer work. That's okay, as we
will focus on using the methods random and collector from here on.

However, let's start off by comparing the six transects before summing them together.

Using the random method (by transect)

RANDOM METHOD
Set your graphics parameters to 3x2 only if you have sufficient
space on your screen. Otherwise just run these one at a time.

par(mfrow=c(3,2))

sp1 <- specaccum(transect1, "random")
plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0,
ci.col="lightblue", ylim=c(0,25))
mtext("Transect 1", side = 3, adj = 0, cex = 1, col = "black")

sp1 <- specaccum(transect2, "random")
plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0,
ci.col="lightblue", ylim=c(0,25))
mtext("Transect 2", side = 3, adj = 0, cex = 1, col = "black")

sp1 <- specaccum(transect3, "random")
plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0,
ci.col="lightblue", ylim=c(0,25))
mtext("Transect 3", side = 3, adj = 0, cex = 1, col = "black")

sp1 <- specaccum(transect4, "random")
plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0,
ci.col="lightblue", ylim=c(0,25))
mtext("Transect 4", side = 3, adj = 0, cex = 1, col = "black")

sp1 <- specaccum(transect5, "random")
plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0,
ci.col="lightblue", ylim=c(0,25))
mtext("Transect 5", side = 3, adj = 0, cex = 1, col = "black")

sp1 <- specaccum(transect6, "random")
plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0,
ci.col="lightblue", ylim=c(0,25))
mtext("Transect 6", side = 3, adj = 0, cex = 1, col = "black")

 9

Using the collector method (by transect)

COLLECTOR METHOD
Set your graphics parameters to 3x2 only if you have sufficient
space on your screen. Otherwise just run these one at a time.

par(mfrow=c(3,2))

sp1 <- specaccum(transect1, "collector")
plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0,
ci.col="lightblue", ylim=c(0,25))
mtext("Transect 1", side = 3, adj = 0, cex = 1, col = "black")

sp1 <- specaccum(transect2, "collector")
plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0,
ci.col="lightblue", ylim=c(0,25))
mtext("Transect 2", side = 3, adj = 0, cex = 1, col = "black")

sp1 <- specaccum(transect3, "collector")
plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0,
ci.col="lightblue", ylim=c(0,25))
mtext("Transect 3", side = 3, adj = 0, cex = 1, col = "black")

sp1 <- specaccum(transect4, "collector")
plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0,
ci.col="lightblue", ylim=c(0,25))
mtext("Transect 4", side = 3, adj = 0, cex = 1, col = "black")

sp1 <- specaccum(transect5, "collector")
plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0,
ci.col="lightblue", ylim=c(0,25))
mtext("Transect 5", side = 3, adj = 0, cex = 1, col = "black")

sp1 <- specaccum(transect6, "collector")
plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0,
ci.col="lightblue", ylim=c(0,25))
mtext("Transect 6", side = 3, adj = 0, cex = 1, col = "black")

 10

Using the random method:

 11

Using the collector method:

At this point we should check whether there are any large jumps or kinks in the data.
These would indicate an ecotone change, which invalidates SACs (i.e. a SAC is invalid if
you run a transect from a forest into wetland, for instance). There are a couple places
where there seem to be minor jumps, but there is nothing consistent, and given the
coarse granularity of the transect (just nine quadrats) some jumpiness is to be expected.

 12

Let's now look at all transects combined. We'll add some additional estimates to the
graphs, focusing on the data as it was collected. At this stage we are still working with
the data arranged so that the collection starts at the boardwalk and then moves into
the rainforest.

Plot Random resamples using boxplots
The following code plots the bootstrapped random resamples using boxplots. These are
simply 'added' over the top of the standard error.

set.seed(42)

Random bootstrapped model
Boxplots show upper and low quartiles, median and range for each
transect point
sp1 <- specaccum(borneo.out, "random")
plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0,
ci.col="lightblue", xlim =c(0,10))
boxplot(sp1, col="yellow", add=TRUE, lty=1, pch=20, cex = 0.7)
mtext("Random", side = 3, adj = 0, cex = 1, col = "black")

	

 13

Plot Random resamples with fitted curves
There are a number of different curve fitting options. Library 'vegan' uses self-starting
non-linear regression curve fitting methods from 'nls'.

Arrhenius Model (Power Law)
The Arrhenius Model is among the oldest and simplest ways to model a species
accumulation curve. It follows a straightforward power law. First, we will start by fitting
Arrhenius models to all of our random resampled datasets and plot this. Here is the
description from ?arrhenius

The Arrhenius model (SSarrhenius) is the expression k*area^z.
This is the most classical model that can be found in any
textbook of ecology (and also in Dengler 2009). Parameter z is
the steepness of the species-area curve, and k is the expected
number of species in a unit area.

Fit Arrhenius (power law) models to the random data
Plot all curves together
sp1 <- specaccum(borneo.out, "random")
mods <- fitspecaccum(sp1, "arrhenius")
plot(mods, col="hotpink", xlim =c(0,10)))
boxplot(sp1, col="yellow", add=TRUE, lty=1, pch=20, cex=0.3)
mtext("Random with Arrhenius Models Fitted", side=3, adj=0, cex=1,
col="black")

 14

Arrhenius Model (Power Law) applied to 'Collector'
The easiest way to obtain parameters for our dataset is to apply the power law
(Arrhenius) model to the collector data. Here's code to generate a model and plot it:

Fit Arrhenius (power law) model to collector curve only
Collector = red
Power law line of best fit = blue
sp1 <- specaccum(borneo.out, "collector")
plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0,
ci.col="lightblue", ylim=c(0,45))
mod1 <- fitspecaccum(sp1, "arrhenius") # collector
plot(mod1, add = TRUE, col=2, lwd=2)
mtext("Collector with Arrhenius Model Fitted", side=3, adj=0,
cex=1, col="black")

 15

Obtaining parameters 'k' and 'z' for the curve
The parameter 'k' is sometimes also given as 'c'. We can obtain the parameters for the
average of the random resampled datasets like so:

coef(mod1)

These parameters can be slotted into a straightforward power law equation:

y = k * xz

Where the x is the spatial measurement, often given as 'area' for species-area
relationships, but it could be 'quadrat' for a species accumulation curve based on
quadrats along a transect (as is the case here). Frequently z is simply assumed to be
0.25, although as we can see from our example it is preferable to model your data and
establish is this is true for your environment of interest. In this case z is 0.296.

Back to basics
We can simply take the k and z values and plot the equation
curve(22.28 * x^0.296, from = 1, to = 9)

RESULT

 k z
22.2821985 0.2956144

 16

The original question was one of examining whether there is a difference in curves when
the data is reversed (i.e. would moving towards the boardwalk produce a different curve
to that generated by moving away from the boardwalk, even if the data were otherwise
the same).

par(mfrow=c(3,2))
set.seed(42)

Random bootstrapped model
Boxplots show upper and low quartiles, median and range for each transect point

Borneo out
sp1 <- specaccum(borneo.out, "random")
plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0, ci.col="lightblue", xlim
=c(0,10))
boxplot(sp1, col="yellow", add=TRUE, lty=1, pch=20, cex = 0.7)
mtext("Random, out", side = 3, adj = 0, cex = 1, col = "black")

Borneo in
sp1 <- specaccum(borneo.in, "random")
plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0, ci.col="lightblue", xlim
=c(0,10))
boxplot(sp1, col="yellow", add=TRUE, lty=1, pch=20, cex = 0.7)
mtext("Random, in", side = 3, adj = 0, cex = 1, col = "black")

Borneo out
sp1 <- specaccum(borneo.out, "random")
mods <- fitspecaccum(sp1, "arrhenius")
plot(mods, col="hotpink", xlim =c(0,10))
boxplot(sp1, col="yellow", add=TRUE, lty=1, pch=20, cex = 0.3)
mtext("Random, out", side=3, adj=0, cex=1, col = "black")

Borneo in
sp1 <- specaccum(borneo.in, "random")
mods <- fitspecaccum(sp1, "arrhenius")
plot(mods, col="hotpink", xlim =c(0,10))
boxplot(sp1, col="yellow", add=TRUE, lty=1, pch=20, cex = 0.3)
mtext("Random, in", side=3, adj=0, cex=1, col = "black")

Borneo out
sp1 <- specaccum(borneo.out, "collector")
plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0, ci.col="lightblue",
ylim=c(0,45))
mod1 <- fitspecaccum(sp1, "arrhenius")
plot(mod1, add = TRUE, col=2, lwd=2)
mtext("Collector, out", side = 3, adj = 0, cex = 1, col = "black")

Obtain 'k' and 'z' for the model
k is sometimes also given as 'c'
coef(mod1)

Borneo in
sp1 <- specaccum(borneo.in, "collector")
plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0, ci.col="lightblue",
ylim=c(0,45))
mod1 <- fitspecaccum(sp1, "arrhenius")
plot(mod1, add = TRUE, col=2, lwd=2)
mtext("Collector, in", side = 3, adj = 0, cex = 1, col = "black")

Obtain 'k' and 'z' for the model
k is sometimes also given as 'c'
coef(mod1)

 17

Here are the graphs produced using the code above, but for the data moving away from
the boardwalk (out, left) and from the jungle towards the boardwalk (in, right).

Out: k = 22.28, z = 0.296
In: k = 12.97, z = 0.527

This illustrates one problem with just relying on the data in the order it is obtained. This is
exactly the same data reversed, but because there is a slight gradient in the environment (i.e.
the boardward is an area of disturbance), the k and z values are completely different when the
orientation is reversed.

 18

To attempt to get around this, researchers sometimes find the 'best' (i.e. most
parsimonious) of the random subsampled models and use this to calculate k and z
instead. Let's see what happens if we do this.

First we will check the 'out' direction.

set.seed(42)

sp1 <- specaccum(borneo.out, "random")
mods <- fitspecaccum(sp1, "arrhenius")
best <- which((sapply(mods$models, AIC)) ==
min(sapply(mods$models, AIC)))

summarizes the best model, including k and z values
We can't use 'coef' here because of the model structure
mods$models[best]

Now, let's check the 'in' direction.

sp1 <- specaccum(borneo.in, "random")
mods <- fitspecaccum(sp1, "arrhenius")
best <- which((sapply(mods$models, AIC)) ==
min(sapply(mods$models, AIC)))

summarizes the best model, including k and z values
We can't use 'coef' here because of the model structure
mods$models[best]

RESULT

[[1]]
Nonlinear regression model
 model: y ~ SSarrhenius(x, k, z)
 data: parent.frame()
 k z
19.6636 0.3417
 residual sum-of-squares: 3.71

Number of iterations to convergence: 2
Achieved convergence tolerance: 6.606e-06

 19

This is certainly better. We now have k of 19.6 and 19.1 and z of 0.342 and 0.358.
However, if you re-run this a number of times with no set.seed, you'll find that these
numbers still wander around quite a bit. Increasing the number of iterations to
'stabilise' the output may still be needed.

The moral here is to be very careful with your data when building a species
accumulation curve. It’s not only passing through a clear ecotone that can cause
species accumulation curves to become sub-optimal. even just slight gradients in the
environment (which may not always be obvious to a field researcher) can cause
problems.

Finally, keep in mind that some more sophisticated models, such as Lomolino, may
deliver better results. Use ?lomolino to check information on that modelling method.

RESULT

[[1]]
Nonlinear regression model
 model: y ~ SSarrhenius(x, k, z)
 data: parent.frame()
 k z
19.1106 0.3578
 residual sum-of-squares: 3.456

Number of iterations to convergence: 3
Achieved convergence tolerance: 1.111e-07

