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Preliminaries 
If you haven't already downloaded and installed a copy of R and RStudio please do so 
now. Both programs are free to use. We will be using RStudio, but as this is simple a 
user-friendly 'wrap-around' for R, you should download both programs. 
 
Download R for windows 
https://cran.r-project.org/bin/windows/base/ 
 
Download  R for mac 
https://cran.r-project.org/bin/macosx/ 
 
Download RStudio (just select the free version) 
- Then scroll down to select your O/S from the list at the bottom of the page 
https://rstudio.com/products/rstudio/download/#download 
 

Changing working directory 
Immediately on opening R, the first thing you need to do is change your working directory 
to the folder where your data is currently kept. In the case of this PDF, you will need to 
unzip the Borneo veg data files and then change your working directory so that it is 
pointed at the file where the Borneo veg files have unzipped. 
 

Changing working directory in RStudio 
Changing the working directory in RStudio is the same for Windows and Mac. 
Both: Select 'Session'  > Set working directory > Choose Directory…  
   > navigate to folder where your data is stored (i.e. your csv files) 
 

Colour Coding 
R code in this PDF is colour coded throughout. Functions (commands) are coloured 
orange. Names of objects or options (i.e. things that you will need to change or rename) 
are coloured blue. Basic syntactical signs (parenthesis, commas, plus or multiplication 
signs) are colour black. Package names are coloured purple. Note, which follow a 
hashtag (#) are not read by R, and serve as a place where you can make notes about your 
tests, code, and figures. These are coloured green. 
 
In the following example, the orange words are functions that R will recognise as 
commands. Functions are typically placed to the immediate left of an opening 
parenthesis. The library 'car' is denoted in purple, and is bracketed by black quote marks 
and parentheses. The object swallows.lm is an object that the biologist as created and 
named themselves. 
 
install.pckages("car") # if not already installed 
library(car) 
crPlots(swallows.lm) 
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Species Accumulation Curves 
The concept behind a species accumulation curve (SAC) is actually quite straightforward. 
Imagine you were hired to go into a forest and count all the species of frogs. Each day 
you go out, looking for more frog species. To start with you would get one, two or three 
new species each day, but over time you'd find fewer and fewer new species. Eventually 
you'd be looking for a few days, or a week or a month and not find any new species. At 
this point, we can probably assume you've found all or most of the frog species in the 
forest. This doesn't necessarily mean you've found all the species. Some might be cryptic 
and hard to see. Some might be inactive at the time of year you are looking. However, 
broadly speaking we can build a curve from the number of new species you find each 
day, and check where it levels out to get an estimate of how many species are probably 
present. 
 

Assumptions & Data Set-up 
Species accumulation curves do not have any testable assumptions per se, but they can 
provide meaningless or misleading results if the experimental design is faulty. The most 
common reason for faulty design is sampling across a clear, heterogeneous boundary. 
What might cause such a boundary? Imagine you are identifying frog species, and you 
are collecting data over several weeks. If it was dry for most of the time, and then it rains 
for three days, then returns to dry weather, you could easily find that there is a clear 
difference between frogs that you identified during the dry and wet weather. The same 
could happen if you cross a geographic boundary. If you are running transects through 
forest, then cross into a wetland, the species assortment would probably suddenly jump. 
 
Mostly, avoiding problems of heterogeneity is a matter of good design and thinking 
carefully about field sites. When you come to plotting the data, a heterogeneous 
boundary will be obvious as a 'jump' in the data. If the curve is smooth, and then jumps 
or kinks upwards you may have a heterogeneity problem. How to cope with this is trickier. 
To some degree, methods like the random bootstrapping approach smooth out these 
kinks and assume the whole environment is homogeneous, and is some instances this 
may actually be acceptable. Otherwise, it may be necessary to split the data (i.e. wet and 
dry days, forest and wetland transects). 
 
Gradual changes across a sampling range are less problematic than sudden jumps, 
although keep in mind that by applying a species accumulation curve you are assuming 
that the environment does represent a coherent whole--problems can still occur. It may 
be possible to run a transects 3km up a mountainside and see only gradual changes in 
species assortment, but it would still be questionable whether or not such a dataset is 
truly representing a 'homogenous' environment. The clearest indicator that you are 
running collection through several different and gradually changing environments is that 
you will not see a levelling out of the curve. It will just continue to increase. Imagine if 
you ran a sample all the way across a continent. It's quite possible the curve would never 
properly level out, because you are always encountering new species.  
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Measuring Effort 
Species accumulation curves require some sort of index of effort. This could be quadrats 
along one or more transect lines, or days spent looking for frogs, or number of new 
species per individual counted (i.e. new frog species per frog), or area surveyed. In the 
example we'll look at, the data was collected in Borneo, examining morphotypes of 
understory plants. The data was collected in six transects through the rainforest with 
nine quadrats per transect. The biologists were interesting in identifying whether there 
might be a change in species richness near the tourist boardwalks in Mulu Forest Park. 
To this end, they positioned Quadrat 1 (1x1m) immediately next to the boardwalk, and 
then ran a transect at a right angle into the forest, so that Quadrat 9 was always the 
furthest quadrat and always the same distance into the forest. 
 
We need to import quite a few datasets. The first dataset records presence and absence 
of a species in a given quadrat. 
 
borneo <- read.table('borneo_binary.csv',header=T, sep = ',') 
View(borneo) 
 
As is, this is not easily usable for species accumulation curves, because the quadrat and 
transect columns will require extra coding to get around. We could use code to remove 
these columns, but instead I’ve just set up a separate csv file that is missing the first two 
columns. 
 
borneo <- read.table('borneo_presabs.csv',header=T, sep = ',') 
View(borneo) 
 
We've also summed the occurrences together and grouped these by quadrat: 
 
borneo.out <- read.table('borneo_away_fr_boardwalk.csv',header=T, 
sep = ',') 
View(borneo) 
 
And we have also split the data by transect: 
 
transect1 <- read.table('borneo_transect1.csv',header=T, sep = ',') 
transect2 <- read.table('borneo_transect2.csv',header=T, sep = ',') 
transect3 <- read.table('borneo_transect3.csv',header=T, sep = ',') 
transect4 <- read.table('borneo_transect4.csv',header=T, sep = ',') 
transect5 <- read.table('borneo_transect5.csv',header=T, sep = ',') 
transect6 <- read.table('borneo_transect6.csv',header=T, sep = ',') 
 
Finally, we are interested in whether there may be a different pattern if we reverse the 
data (i.e. flip the transects and run them from the forest towards the boardwalk). As such, 
we have an inverted dataset as well: 
 
borneo.in <- read.table('borneo_towards_boardwalk.csv',header=T, 
sep = ',') 
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Most of the code we will be using is from the vegan package, so you will need to load it 
now if you don't have it already installed and loaded. 
 
install.packages("vegan") 
library(vegan) 
 
Let's start by applying some different methods for generating species accumulation 
curves. The method collector will add data in the order it was collected. The method 
random is a form of bootstrapping and adds data in a random order. The method exact 
finds the expected mean species richness and will only work if the data is in a 
presence/absence format (the other methods will accept accumulated species counts). 
The method coleman finds the expected species richness following Coleman et al. 
(1982) and rarefaction finds the mean when accumulating individuals instead of 
sites. If your data is already presented in the form of new species per individual plant or 
animal counted, then you have already set it up as a rarefaction analysis by default (i.e. 
no matter what you run it will come out as a form of rarefaction). 
 
Let's work with the presence/absence data first. 
 
sp1 <- specaccum(borneo, "random") 
sp2 <- specaccum(borneo, "collector") 
sp3 <- specaccum(borneo, "exact") 
sp4 <- specaccum(borneo, "coleman") 
sp5 <- specaccum(borneo, "rarefaction") 
 

Graphing species accumulation curves 
plot(sp1) 
mtext("Random", side = 3, adj = 0, cex = 1, col = "black") 
 
plot(sp2) 
mtext("Collector", side = 3, adj = 0, cex = 1, col = "black") 
 
plot(sp3) 
mtext("Exact", side = 3, adj = 0, cex = 1, col = "black") 
 
plot(sp4) 
mtext("Coleman", side = 3, adj = 0, cex = 1, col = "black") 
 
plot(sp5) 
mtext("Rarefaction", side = 3, adj = 0, cex = 1, col = "black") 
 
You should obtain the plots shown over-page. Note that ‘collector’ does not have 
standard error bars, as it is simply presenting the species in the order they were found. 
You can plot all the plots in one column by re-setting your par, but this will only work if 
you have a sufficiently large screen. 
 
par(mfrow=c(5,1))  
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Graphing species accumulation curves: adding colour 
 
Let's try adding some colour and creating some nicer looking graphs. Just as an aside, 
scientific graphing conventions don’t include titles (i.e. scientific graphs typically don’t 
have titles). We are including titles just to keep track of what we are plotting because 
there are so many plots to look at. 
 
plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0, 
ci.col="lightblue") 
mtext("Random", side = 3, adj = 0, cex = 1, col = "black") 
 
plot(sp2, ci.type="poly", col="blue", lwd=2, ci.lty=0, 
ci.col="lightblue") 
mtext("Collector", side = 3, adj = 0, cex = 1, col = "black") 
 
plot(sp3, ci.type="poly", col="blue", lwd=2, ci.lty=0, 
ci.col="lightblue") 
mtext("Exact", side = 3, adj = 0, cex = 1, col = "black") 
 
plot(sp4, ci.type="poly", col="blue", lwd=2, ci.lty=0, 
ci.col="lightblue") 
mtext("Coleman", side = 3, adj = 0, cex = 1, col = "black") 
 
plot(sp5, ci.type="poly", col="blue", lwd=2, ci.lty=0, 
ci.col="lightblue") 
mtext("Rarefaction", side = 3, adj = 0, cex = 1, col = 
"black") 
 
Note also that methods that use bootstrapping will generate a slightly different result 
each time because they are working from a randomly subsetting dataset. You can 
‘stablise’ the result by setting a seed number. If you do this, you’ll get the same result 
each time. 
 
set.seed(42) 
 
Now try re-running the random curve a couple times. You should find that you get the 
same result. You can set the seed to any number. I tend to use 42 just because of fond 
memories of reading Douglas Adams. 
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The species accumulation curves are looking quite nice, but we have a problem, which is 
that R thinks the whole 6 transects by 9 quadrats is a single collecting event, giving over 
50 samples. We can sum the species observations together, and organise them by 
transects, but if we do this the method exact will no longer work. That's okay, as we 
will focus on using the methods random and collector from here on. 
 
However, let's start off by comparing the six transects before summing them together. 
 
Using the random method (by transect) 
 
# RANDOM METHOD 
# Set your graphics parameters to 3x2 only if you have sufficient 
space on your screen. Otherwise just run these one at a time. 
 
par(mfrow=c(3,2))  
 
sp1 <- specaccum(transect1, "random") 
plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0, 
ci.col="lightblue", ylim=c(0,25)) 
mtext("Transect 1", side = 3, adj = 0, cex = 1, col = "black") 
 
sp1 <- specaccum(transect2, "random") 
plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0, 
ci.col="lightblue", ylim=c(0,25)) 
mtext("Transect 2", side = 3, adj = 0, cex = 1, col = "black") 
 
sp1 <- specaccum(transect3, "random") 
plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0, 
ci.col="lightblue", ylim=c(0,25)) 
mtext("Transect 3", side = 3, adj = 0, cex = 1, col = "black") 
 
sp1 <- specaccum(transect4, "random") 
plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0, 
ci.col="lightblue", ylim=c(0,25)) 
mtext("Transect 4", side = 3, adj = 0, cex = 1, col = "black") 
 
sp1 <- specaccum(transect5, "random") 
plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0, 
ci.col="lightblue", ylim=c(0,25)) 
mtext("Transect 5", side = 3, adj = 0, cex = 1, col = "black") 
 
sp1 <- specaccum(transect6, "random") 
plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0, 
ci.col="lightblue", ylim=c(0,25)) 
mtext("Transect 6", side = 3, adj = 0, cex = 1, col = "black") 
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Using the collector method (by transect) 
 
 
# COLLECTOR METHOD 
# Set your graphics parameters to 3x2 only if you have sufficient 
space on your screen. Otherwise just run these one at a time. 
 
 
par(mfrow=c(3,2)) 
 
sp1 <- specaccum(transect1, "collector") 
plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0, 
ci.col="lightblue", ylim=c(0,25)) 
mtext("Transect 1", side = 3, adj = 0, cex = 1, col = "black") 
 
sp1 <- specaccum(transect2, "collector") 
plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0, 
ci.col="lightblue", ylim=c(0,25)) 
mtext("Transect 2", side = 3, adj = 0, cex = 1, col = "black") 
 
sp1 <- specaccum(transect3, "collector") 
plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0, 
ci.col="lightblue", ylim=c(0,25)) 
mtext("Transect 3", side = 3, adj = 0, cex = 1, col = "black") 
 
sp1 <- specaccum(transect4, "collector") 
plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0, 
ci.col="lightblue", ylim=c(0,25)) 
mtext("Transect 4", side = 3, adj = 0, cex = 1, col = "black") 
 
sp1 <- specaccum(transect5, "collector") 
plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0, 
ci.col="lightblue", ylim=c(0,25)) 
mtext("Transect 5", side = 3, adj = 0, cex = 1, col = "black") 
 
sp1 <- specaccum(transect6, "collector") 
plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0, 
ci.col="lightblue", ylim=c(0,25)) 
mtext("Transect 6", side = 3, adj = 0, cex = 1, col = "black") 
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Using the random method: 
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Using the collector method: 

 
 
 
At this point we should check whether there are any large jumps or kinks in the data. 
These would indicate an ecotone change, which invalidates SACs (i.e. a SAC is invalid if 
you run a transect from a forest into wetland, for instance). There are a couple places 
where there seem to be minor jumps, but there is nothing consistent, and given the 
coarse granularity of the transect (just nine quadrats) some jumpiness is to be expected. 
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Let's now look at all transects combined. We'll add some additional estimates to the 
graphs, focusing on the data as it was collected. At this stage we are still working with 
the data arranged so that the collection starts at the boardwalk and then moves into 
the rainforest. 
 
Plot Random resamples using boxplots 
The following code plots the bootstrapped random resamples using boxplots. These are 
simply 'added' over the top of the standard error. 
 
set.seed(42) 
 
# Random bootstrapped model 
# Boxplots show upper and low quartiles, median and range for each 
transect point 
sp1 <- specaccum(borneo.out, "random") 
plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0, 
ci.col="lightblue", xlim =c(0,10)) 
boxplot(sp1, col="yellow", add=TRUE, lty=1, pch=20, cex = 0.7) 
mtext("Random", side = 3, adj = 0, cex = 1, col = "black") 
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Plot Random resamples with fitted curves 
There are a number of different curve fitting options. Library 'vegan' uses self-starting 
non-linear regression curve fitting methods from 'nls'. 
 
Arrhenius Model (Power Law) 
The Arrhenius Model is among the oldest and simplest ways to model a species 
accumulation curve. It follows a straightforward power law. First, we will start by fitting 
Arrhenius models to all of our random resampled datasets and plot this. Here is the 
description from ?arrhenius 
 
The Arrhenius model (SSarrhenius) is the expression k*area^z. 
This is the most classical model that can be found in any 
textbook of ecology (and also in Dengler 2009). Parameter z is 
the steepness of the species-area curve, and k is the expected 
number of species in a unit area. 
 
# Fit Arrhenius (power law) models to the random data 
# Plot all curves together 
sp1 <- specaccum(borneo.out, "random") 
mods <- fitspecaccum(sp1, "arrhenius") 
plot(mods, col="hotpink", xlim =c(0,10))) 
boxplot(sp1, col="yellow", add=TRUE, lty=1, pch=20, cex=0.3) 
mtext("Random with Arrhenius Models Fitted", side=3, adj=0, cex=1, 
col="black") 
 

 
 



 14 

Arrhenius Model (Power Law) applied to 'Collector' 
The easiest way to obtain parameters for our dataset is to apply the power law 
(Arrhenius) model to the collector data. Here's code to generate a model and plot it: 
 
# Fit Arrhenius (power law) model to collector curve only 
# Collector = red 
# Power law line of best fit = blue 
sp1 <- specaccum(borneo.out, "collector") 
plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0, 
ci.col="lightblue", ylim=c(0,45)) 
mod1 <- fitspecaccum(sp1, "arrhenius") # collector 
plot(mod1, add = TRUE, col=2, lwd=2) 
mtext("Collector with Arrhenius Model Fitted", side=3, adj=0, 
cex=1, col="black") 
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Obtaining parameters 'k' and 'z' for the curve 
The parameter 'k' is sometimes also given as 'c'. We can obtain the parameters for the 
average of the random resampled datasets like so: 
 
coef(mod1) 
 

 
 
These parameters can be slotted into a straightforward power law equation: 
 

y = k * xz 
 
Where the x is the spatial measurement, often given as 'area' for species-area 
relationships, but it could be 'quadrat' for a species accumulation curve based on 
quadrats along a transect (as is the case here). Frequently z is simply assumed to be 
0.25, although as we can see from our example it is preferable to model your data and 
establish is this is true for your environment of interest. In this case z is 0.296. 
 
# Back to basics 
# We can simply take the k and z values and plot the equation 
curve(22.28 * x^0.296, from = 1, to = 9) 
 

 

RESULT 
 

         k          z  
22.2821985  0.2956144 
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The original question was one of examining whether there is a difference in curves when 
the data is reversed (i.e. would moving towards the boardwalk produce a different curve 
to that generated by moving away from the boardwalk, even if the data were otherwise 
the same). 
 
par(mfrow=c(3,2)) 
set.seed(42) 
 
# Random bootstrapped model 
# Boxplots show upper and low quartiles, median and range for each transect point 
 
# Borneo out 
sp1 <- specaccum(borneo.out, "random") 
plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0, ci.col="lightblue", xlim 
=c(0,10)) 
boxplot(sp1, col="yellow", add=TRUE, lty=1, pch=20, cex = 0.7) 
mtext("Random, out", side = 3, adj = 0, cex = 1, col = "black") 
 
# Borneo in 
sp1 <- specaccum(borneo.in, "random") 
plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0, ci.col="lightblue", xlim 
=c(0,10)) 
boxplot(sp1, col="yellow", add=TRUE, lty=1, pch=20, cex = 0.7) 
mtext("Random, in", side = 3, adj = 0, cex = 1, col = "black") 
 
# Borneo out 
sp1 <- specaccum(borneo.out, "random") 
mods <- fitspecaccum(sp1, "arrhenius") 
plot(mods, col="hotpink", xlim =c(0,10)) 
boxplot(sp1, col="yellow", add=TRUE, lty=1, pch=20, cex = 0.3) 
mtext("Random, out", side=3, adj=0, cex=1, col = "black") 
 
# Borneo in 
sp1 <- specaccum(borneo.in, "random") 
mods <- fitspecaccum(sp1, "arrhenius") 
plot(mods, col="hotpink", xlim =c(0,10)) 
boxplot(sp1, col="yellow", add=TRUE, lty=1, pch=20, cex = 0.3) 
mtext("Random, in", side=3, adj=0, cex=1, col = "black") 
 
# Borneo out 
sp1 <- specaccum(borneo.out, "collector") 
plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0, ci.col="lightblue", 
ylim=c(0,45)) 
mod1 <- fitspecaccum(sp1, "arrhenius") 
plot(mod1, add = TRUE, col=2, lwd=2) 
mtext("Collector, out", side = 3, adj = 0, cex = 1, col = "black") 
 
# Obtain 'k' and 'z' for the model 
# k is sometimes also given as 'c' 
coef(mod1) 
 
# Borneo in 
sp1 <- specaccum(borneo.in, "collector") 
plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0, ci.col="lightblue", 
ylim=c(0,45)) 
mod1 <- fitspecaccum(sp1, "arrhenius") 
plot(mod1, add = TRUE, col=2, lwd=2) 
mtext("Collector, in", side = 3, adj = 0, cex = 1, col = "black") 
 
# Obtain 'k' and 'z' for the model 
# k is sometimes also given as 'c' 
coef(mod1) 
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Here are the graphs produced using the code above, but for the data moving away from 
the boardwalk (out, left) and from the jungle towards the boardwalk (in, right). 
 

 
 
Out: k = 22.28, z = 0.296 
In: k = 12.97, z = 0.527 
 
This illustrates one problem with just relying on the data in the order it is obtained. This is 
exactly the same data reversed, but because there is a slight gradient in the environment (i.e. 
the boardward is an area of disturbance), the k and z values are completely different when the 
orientation is reversed.  
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To attempt to get around this, researchers sometimes find the 'best' (i.e. most 
parsimonious) of the random subsampled models and use this to calculate k and z 
instead. Let's see what happens if we do this. 
 
First we will check the 'out' direction. 
 
set.seed(42) 
 
sp1 <- specaccum(borneo.out, "random") 
mods <- fitspecaccum(sp1, "arrhenius") 
best <- which((sapply(mods$models, AIC)) == 
min(sapply(mods$models, AIC))) 
 
# summarizes the best model, including k and z values 
# We can't use 'coef' here because of the model structure 
mods$models[best] 
 

 
 
Now, let's check the 'in' direction. 
 
sp1 <- specaccum(borneo.in, "random") 
mods <- fitspecaccum(sp1, "arrhenius") 
best <- which((sapply(mods$models, AIC)) == 
min(sapply(mods$models, AIC))) 
 
# summarizes the best model, including k and z values 
# We can't use 'coef' here because of the model structure 
mods$models[best] 
 

RESULT 
 

[[1]] 
Nonlinear regression model 
  model: y ~ SSarrhenius(x, k, z) 
   data: parent.frame() 
      k       z  
19.6636  0.3417  
 residual sum-of-squares: 3.71 
 
Number of iterations to convergence: 2  
Achieved convergence tolerance: 6.606e-06 
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This is certainly better. We now have k of 19.6 and 19.1 and z of 0.342 and 0.358. 
However, if you re-run this a number of times with no set.seed, you'll find that these 
numbers still wander around quite a bit. Increasing the number of iterations to 
'stabilise' the output may still be needed. 
 
The moral here is to be very careful with your data when building a species 
accumulation curve. It’s not only passing through a clear ecotone that can cause 
species accumulation curves to become sub-optimal. even just slight gradients in the 
environment (which may not always be obvious to a field researcher) can cause 
problems. 
 
Finally, keep in mind that some more sophisticated models, such as Lomolino, may 
deliver better results. Use ?lomolino to check information on that modelling method. 
 

RESULT 
 

[[1]] 
Nonlinear regression model 
  model: y ~ SSarrhenius(x, k, z) 
   data: parent.frame() 
      k       z  
19.1106  0.3578  
 residual sum-of-squares: 3.456 
 
Number of iterations to convergence: 3  
Achieved convergence tolerance: 1.111e-07 


